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We show that irreducible polynomial covariants (tensors) based on a given irreducible

representation of a finite group must have a definite p-phase, i.e., degree modulo p, where p is the
order of the center of the image of the group. We also show that the numerator of the Poincaré
function is often a polynomial symmetric around a given degree and we derive several interesting

properties of the Poincaré function.

PACS numbers: 02.20 + b, 02.30. + g, 11.15. — q, 61.50.Em

I. INTRODUCTION

In many areas of physics one is faced with a problem of
describing or constructing irreducible polynomial covar-
iants (tensors) based on a given representation of a physical
group G. For example, in the Landau theory of phase transi-
tions'? and in the Higgs mechanism of gauge theories** one
requires construction of the invariants and the vector fields.’
On the other hand, a need for constructing covariants for
crystallographic point groups was realized by Bethe half a
century ago®: these are the crystal harmonics, a generaliza-
tion of spherical harmonics, the well-known covariants of
0(3).

The above general problem can be formulated more
precisely as follows. Let y be a unitary character (representa-
tion) of a compact group G acting on a vector space V over
the field C of complex numbers (¥'~C “™X), Let, further-
more, C[V'] be the ring of complex polynomials on V. As an
infinite-dimensional vector space, C[¥'] can be decomposed
into the sum of subspaces C[V']™ of homogeneous polynomi-
als of degree m. The unitary action of G on Vinduces a linear
action on C[V] for which C[V']™ are invariant subspaces.
Each C[V']™ can, thus, be decomposed into isotypical invar-
iant subspaces C[ ¥ 1% which carry the irreducible represen-
tations & of G. The multiplicity of & in C[ V' ]7, denoted p,,,
(@, x), is the number of times & occurs in y ™, the mth sym-
metrized power of y. Therefore, the problem of describing
C[¥] reduces to (i) finding the multiplicity u,,(&,y ) and (ii)
finding 4,,(a,y ) linearly independent sets of dim & homo-
geneous polynomials of degree m, each set forming a basis
for & (see Refs. 7 and 8).

While the second problem may be answered using the
projection operator techniques, the first problem is solved by
calculating the Poincaré series. It is a formal power series

Plaxi)= 3 pnlaxh™ (n

For finite groups, with which we will be concerned in the rest
of this paper, P(&,y;t ) may be shown to converge for suffi-
ciently small ¢ to a rational function

Play;t) = Nlay:t)/Dyt) (2)
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where N and D are polynomialsin ¢ (see Ref. 8). In fact, it can
be shown® that they have a general form

dim y
Diyt)= [ x (1 —t"), d;>1, (3)
i=1
and
. la,y) B1éx)
Nigyt)= > 7%, §>0. (4)
j=1

The forms Egs. (2)—(4) betray a deeper structure of C[ V).
They are consequences of the following important facts.®

Theorem 1.1: For a given ¥, the following hold.

(a) There are precisely dimy algebraically
independent  G-invariant homogeneous polynomials
0,eC[V ], deg 6, =d,,i=12,.., dim y, such that C[V']isa
Jree module over the polynominal ring C[6,,0,,...,8 gim , ]-

(b) Each C[Vl,=o05_,C[V]? is a free
C[6,,6,,...,0 4im , ] module.
(c) The action of G on the quotient ring

C[VV/(8,,...,0 gim ) isisomorphic tox times the regular repre-
sentation of y (G) [i.e., / (&, y) = x(y) dim &, in Eq. (4)] with
the basis covariants being homogeneous of degree §;(&,y ).

That is, for each irreducible representation & there are
precisely / (&,y) = «(y)dim & independent basic &-covariant
homogeneous polynomial fields 5% degby =6,(a.y),
Jj=12,..1{ayx) such that every a-covariant polynomial
field v, can be decomposed as

Ha,y)

Va = Z qu!l‘i’ qjec[al’ez""’edim X]’ (5)
j=1

where the coefficients g; are uniquely determined by v,, . [By
@ covariant we mean a map v, :V—C%™ # such that for every
geGone has v, © ¥ (g) = &(g)o v, ]

The Poincaré series have often been calculated. Most
often physicists were concerned with the invariants and they
have calculated corresponding Poincaré series (also called
Molien functions®) for irreducible representations of three-
dimensional point groups'®"* and for some irreducible re-
presentations of a space group.'* A general procedure for
calculating Molien functions for irreducible representations
of space groups has also been developed.!*'* Furthermore,
Poincaré series for covariants of ordinary'®'® and spin re-
presentations of three-dimensional point groups,?° as well as
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for magnetic point groups,”' have been calculated. The Poin-
caré series (as well as some other interesting generating func-
tions) have also been calculated for representations of com-
pact Lie groups®? and the topic has been reviewed recently.?
However, in most of the above-cited work very little
attention is paid to general relations among Poincaré series
of a group.? For example, in Ref. 17 it is pointed out that for
irreducible characters & and ¥, the series must satisfy

Zdimap(a,;z;t)= (1 —¢)~dmg (6)

but there remain unanswered some obvious questions. For
example: Is it an accident that very often for a group and a
given  the polynomials N (&,7;¢ ) are symmetrical around a
given power (which depends only on ¥ )? Or when the above
is not the case, like for the I, and I, representations of the
tetrahedral group 7, is there any significance in the fact that
there are some simple relations among the series [e.g.,
N(I\,[55t)=t>N (I, 55t ~ ') for T, in the notation of Ref.
17]? Or why for the vector representation of the full cubic
group O, all the series are either even or odd? The remainder
of this short paper is concerned with precisely such ques-
tions.

It will be first shown in the next section how the the
Poincaré series for reducible representations can be calculat-
ed from the series for irreducible ones using the Clebsch—
Gordan coefficient. From thereon only the series for irredu-
cible characters will be considered. First, the results which
answer the first two of the above-mentioned questions will be
derived. Then, some simple results based on the center of G
and on the kernel of § will be deduced. Sec. III will be con-
cerned with some deeper results based on a notion of p-phase
of @ relative to y.

li. SIMPLE RESULTS

The Poincaré series [Eq. (1)] can be generalized to the
case when both representations are reducible: a = o, ¢ 2,
and y =y, @y, In that case u,, (a,y) is the intervening
number for & and y ™!,

Hmlay) = ([tr a(g)]*[tr x'™(g)]), (7)
where we used ( - - - ) to denote the group average. Clearly,
trla, @ a,) =tra, +tra, and Ko layy) =t la,y)

+ U, las,y). Consequently,
Pla,®ayy;t) = Playy;t) + Playy;t), (8)
and it suffices to consider irreducible @ = & (see Ref. 25).
On the other hand, it is well known® that tr y ! is gen-
erated by det (1 — ty )~ ' and
Pla,y;t) = (tr &(g)* det [1 —ty (g)] ™). )
Using this equation and det(l — ty)
=det (1 — ty,) det (1 — zy,) for y = y, ® y,, we write
Play;t) = (([tr&*(g)] det [1 —ty,(g)] "

X gy det [1— 11,0817 1)), (10)
with an obvious notation. We define §,, =5, by
(6 F(g)) =Fg), (11)

for every function F (g) defined on the conjugacy classes of G.
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Owing to the orthogonality relations among irreducible uni-
tary characters of G, §,, can be represented as

S = JMtrB*g)ltr Blg)l. (12)
7

Substituting this expression into Eq. (10) and using the
Clebsch-Gordan series, X8 = 2,C%; &, leads t0°

Play,oxst)= 3 3 C2y PlyxstPByzt)  (13)
8 v

Equations (8) and (13) demonstrate that the Poincaré
series for reducible representations a and y can always be
expressed in terms of the series of their irreducible compo-
nents & and ¥. Therefore, in the remainder of this paper we
will consider only irreducible representations and corre-
sponding P (&,y;t ).

Starting from Eq. (9), it is easy to derive the following
identity””:

Plaj;t)=(—1t)" % P(adet g,g *t™"). (14)
This, via Eq. (3) and
D(p*t =Dt ~)=(—1t)" "k ~ WD (),  (15)
leads to

N(@g;t)=t"WN (@ det .7 *¢ ), (16)

where r({ ) = 2{"¥[d,(}) — 1] (when the image of G under
Y is a reflection group, 7 equals the number of reflections).
Consequently, the degree of N(a,};t) cannot exceed r(} ).
Furthermore, when § ~ * and & det ¥ ~@, which is often
the case, or when & det y ~a*, Eq. (16)implies that ¥V (&,;¢ )
is a polynomial symmetric around the power ir(y ). These
two remarks, which also hold for reducible a and y, com-
pletely answer the first two questions raised at the end of Sec.
I

To proceed with other simple results, let us denote by
1 (G) the image of G under ¥,

¥ (G) = Imy(G). (17)
Thatis,  (G')is the group of matrices representing G under .
Therefore, in deriving results pertinent to the G-action on V'
the only memory of G is through ¥ (G ), which is isomorphic
to the quotient group G /Kerg(y ) [Kerg(y )is the kernel of
¥, ie, it is the largest subgroup of G such that
Img (Kergy ) = 1]. In particular, we have the following.

Lemma2.1: C[V]can carry only these representations &
of G which are also representations of y(G) such that
Kerg(@)>Kerg(¥ )

An immediate consequence of this lemma is the follow-
ing corollary.

Corollary 2.1: If P(&,};t }#0 then Kerga>Kerg (v ).

The same conclusion could have been reached by ob-
serving that a symmetrized power of an identity matrix is
another identity matrix. This line of reasoning leads us to
consider the center of G, Ctr(G ): it is the largest subgroup of
G whose elements commute with all elements of G; it is an
invariant subgroup of G, Ctr(G )<G; it is also abelian. It is an
immediate consequence of Schur’s lemmas that elements of
Ctr(G) will be represented by matrices proportional to the
identity matrix in any irreducible representation y. Hence,
an observation that a symmetrized power of a scalar ( = ma-
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trix proportional to any identity matrix) is another scalar,
results in some further and more refined results analogous to
Corollary 2.1.

Since Cir{G ) is abelian and its representation under ¥ is
scalar (essentially one-dimensional), ¥ [Ctr(G )] must be iso-
morphic to a cyclic group C,y, c(i) being a divisor of
|Ctr(G )| = order of Ctr (G) (see Refs. 28 and 29). Conse-
quently, the mth symmetrized power of y [Ctr(G )] is isomor-
phic to a cyclic group of order c(y )/ged(c(y ),m),

¥ [Cr(G N ~ Coyygeatatgm (18)
where ged(x,p,z,...) denotes the greatest common divisor of x,
¥, 2,... . This verifies the following lemmas.

Lemma 2.2: (a) D(y;t) is a polynomial in ¢,
D (y;t) = D'({;t ) [that is, ¢(} ) is a divisor of each d, (¥ ),
i=1,.,dim§, cf Eq. (3) and Theorem 1.1} (b) if
P{a,y;t)#0then c(@)is divisor of ¢(y ); and (c) there exists an
integer n(&), 0<n(&) < c(@), such that N (&, ;¢ ) is a polynomial
in ¢ X! times ¢ "@<l l/c(&i, N(&:i’;t) = ¢ Ma)cl¥ Veld) NI(&:i’;t c()‘())
[thatis,each§;(&,¥ ),/ = 1,..../ (&} ), is equal to n{@)c(} )/c(a)
modulo c(f ), cf. Eq. (4) and Theorem 1.1].

An immediate corollary is the following.

Corollary 2.2: If P (@,;t ) #0 then c(&) divides c(y ) and

majety e NV (@15t <)

Playt)=t -
( X ) D'(i’;td“)

, 0<n(@) < cl@).

(19)

It is clear at this point that one could make Corollary

2.2 [e.g., n(@)]more precise. However, it is also clear that the

main ingredient in deriving this corollary is the fact that

Ctr(G) is represented by scalars in . Thus, we could obtain

finer results by considering the subgroup of a// scalars in

1 (G') which obviously includes y [Ctr(G)]. This is the line
which we will pursue in the next section.

Ill. CENTERER AND p-PHASE

Following the motivation of the previous section let us
focus on the group of all scalars in ¥ (G ). Since ¥ is irreduci-
ble, this groupis the center of ¥ (G ). Its inverseimage under ¢
we will call the centerer of { and we will denote it by Zer (Y ):

Zerg(f )=Im; ' {Ctr[§ (G)]}. (20)

That is, Zerg(y ) is the largest subgroup of G such that its
elements are represented under ¥ by scalar matrices.

It is straightforward to prove the following properties
of Zerg (v ):

Zerg (v )>2Kerg(¥ ); (21)
Zerg(y )>Ctr(G); (22)
Zerg (Y )<G. (23)

Furthermore, it can be seen, just as in the case of Kerg{} ),
that the definition is “good,” i.e., Zer; (¥ ) is independent of a
particular realization of § within its equivalence class. In
fact, Zer;(} ) can be easily determined directly from the
character tables:

Zerg(v) = {g: geG|tr[¥ (g)]| = dim ¢ }. (24)
Therefore, we see that Zers (¥ ) is a natural next step from

Kerg(y).2%?!
Since Ctr [{ (G)] is an abelian, scalar matrix group it
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must be a cyclic group

Cr[¥ (G)] ~Cpy, (25)
of order (period)
plt) = [Cr[¥ (G)]] = |Zerg(} )/Kerg (¥ ). (26)

It can be written as

Cur(f (G)] = {20 V}FEL,  2(p), = 7). (27)
Therefore, following a similar argument that led to Corol-
laries 2.1. and 2.2. we find the following lemma.

Lemma3.1:1f P (&,y;t ) #0then Ker;(@)>Kerg (¥ ) and
Zerg(@)>Zerg(y )

Let us now consider g,,8,€lmy "[2(¥ )] and let us as-
sume that the conditions of Lemma 3.1. are fulfilled. Then
&(g,) and é&(g,) are also scalars. Furthermore, for every in-
teger n, g7 go%) ~ "eKerg(f )<Kerg(@), implies

alg,)Sa(gf" "= 1. (28)
In particular, taking » = 0 and 1, one finds &(g,) = @(g,) and
é(g,P®' = 1. Therefore, there exists an integer n(&,j ),
O<nia,y ) <ply ), such that

a{Img '[z(¢ )1} = {z(7 >} (29)
and we say that & has a definite p(y )-phase with respect to ¥,
namely, n(@,y ). The phase can easily be determined from the
character tables.*?

We are now in the position to generalize Lemma 2.2.

Lemma 3.2: (a)D (};¢) is a polynomial in 7%, D (¥;¢)
=D (p;t"*)) [that is, p({) is a divisor of each d,(}),
i=1,..,dim ¢ ]; and (b) N (&,7;¢) is a product of t "®%) and a
polynomial in t?%), N(&,y;t )=t "®2'N (&,7;t"¥)) [that is,
eachdjia,y ),j = 1,..../ (@} ), isequal ton(&,p ) modulo p(} )].

Therefore, we have the corollary which generalizes
Corollary 2.2.

Corollary 3.1: If P(a,j;t )#0 then there exists n(&,} ),
0<nia,y) <p(y), such that

P(a,g;t) = t "V [N (&,§;t "2 /D (;t %)), (30)
It can be verified that Eq. (30) does not contradict Eq. (19)
since ¢(y } divides p{} ).

The main results of this paper are Lemma 3.1. and Cor-
ollary 3.1 which answer the last question of Sec. I. In the
remainder of this section we will show how these results may
be used to relate the Poincaré series P (&,€};¢ ) to the Poincaré
series for P (@€~ 9,y;t), g = 1,...,p(€), & being a linear (one-
dimensional) character. The formula we seek to prove is

(&)
Pla.ep;t) = pz' Z g mod p(€)]P(ae =% p;t), (31)
g=1
where the projector Z[g mod p(é)] picks the powers
g mod p(€) out of a power series. The sum need extend only
over these ¢ for which Kerg(@é  9>Kerg(f) and
Zerg(aé ™ ) »Zerg(y )
The first step in deriving Eq. (31) is

P(aepst) = 3 (r[B(@)1P(@xB.g:éle)r)), (32)
B

which follows from Egs. (9) and (12) and the fact that &(g) is a
scalar (complex number). On the other hand, using the origi-
nal definition [Eq. (1)] one easily verifies that the terms
which survive in Eq. (32) are only those for which 3 =&~ 9,
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q=1,2,...p(€). Thus,

ple)
Plagyt)= 3 (& %g)P(ae ™ 1;élg))). (33)
g=1
The next step is to observe that
8 .
(Fle@)]) = — S Flemorma. (34)
Plé) &=

Furthermore, it follows from Lemma 3.1 that P (&€ ~9,§;t ) is
identically zero unless Kerg(@€é 9)»Kerg(y) and
Zerg (@€~ 9)>Zerg (¥ ). Therefore, by applying Eq. (34) to Eq.
(33), we arrive at the result [Eq. (31)].

In order to illustrate the relationship [Eq. (31)] we con-
sider the octahedral group O. The Poincaré series for this
group have been calculated in Ref. 17 whose notation we
adopt. Let us take y = I's and € = I',. Using the character
tables we find I, s =T, p(I,)=2 and I"; ' = I,. Thus,
Eq. (31) reduces to

P(&,lyt)= Z[0mod 2]1P(a,l st
+ P {1 mod2]P (Gl Ist). (35)

Let us first take @ = I',. From Ref. 17 we find P(I"},[ s;t)
=1/(1 —t3(1 =231 —tY and P, Ist)=1%/
(1 —t?3)(1 — £3)(1 — ¢ so that Eq. {35) leads to P{I",,[,;t)
=(142%)/(1 —t3)(1 —t*(1 — ) as is indeed the case. If
we now take &@ = I'; and observe that I';], = I'; we find
usingEq.(35)P (5, 4t ) = P (4,1 s;t ). Theright-handsideis,
of. Ref. 17, (2 +t4/(1 — 31 —¢3(1 — %) which needs
to be written with the denominator of P(I",[,;t) to get
P(I';,[,;t) carrying the information on I'; covariants of
DyP( Dy Lgt) =2+t + 54 17)/(1 =31 — ¥ (1719,
One can similarly determine all P(&,l ,;t) using Eq. (35).
In all the cases N (&, 4t ) is symmetric around the power
2 which, as explained in previous section, is due to the
fact that I'*~I,detl,=T"'=1 and HIl,)=(2-—1)
+4-1)+06-1)=9

IV. CONCLUSIONS

We showed in this brief paper how various characteris-
tics of Poincaré series can be understood on the basis of
structure of irreducible images of a group. In particular, we
showed that an important role is played by the center of an
image and, consequently, by its inverse image which we
called the centerer. For example, we proved that all &-covar-
iants which can be constructed from symmetrized powers of
1 must have a definite p(} )-phase, i.e., a definite degree mod-
ulo p(¢ ). Furthermore, we exemplified a use of the results of
this paper to derive a formula for relating the Poincaré series
P (&,&j;t )withtheseriesP(G€ ~ 9,75t ), ¢ = 1,...,p(€), whenever
€ is a linear character.
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parameters) are investigated. The superdeterminants of such matrices are defined. Lie groups
consisting of these matrices and their Lie algebras are studied.
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I. INTRODUCTION

Lie superalgebras and Lie supergroups have been uti-
lized extensively in physics.' In those theories, Grassmann
algebras play an important role. In fact, the theory of super-
manifolds and supergroups are formulated on the basis of
Grassman algebras.”® They have been also used in describ-
ing Fermi systems.” Ohnuki and Kamefuchi®-!! have intro-
duced generalized Grassmann numbers and generalized
Bose numbers to describe para-Fermi and para-Bose sys-
tems. They also considered the groups parametrized in these
numbers.

On the other hand, Rittenberg and Wyler'>!® tried to
go beyond supersymmetry and introduced color algebras
and color superalgebras. Their concept was beautifully for-
mulated as generalized Lie algebras by Scheunert'* (see also
Agrawala'®). The supersymmetry in his sense is considered
to be the most general with respect to the concept of commu-
tativity. We call the (associative) algebras with this general-
ized supersymmetry the o-commutative algebras and adopt
them as a basis of our theory. It is interesting that a o-com-
mutative algebra has appeared in a quark confinement mod-
el'® (see example 2.3).

In the present work we shall develop the theory of ma-
trices whose entries are elements of 2 o-commutative algebra
{matrices with o-symmetric parameters) and study the alge-
bras and the groups consisting of these matrices.

The paper is organized as follows. In Sec. 11, we give
some fundamental concepts which are basically formulated
by Scheunert. In Sec. III, we define the (super) determinant
of a matrix with o-symmetric parameters and give its basic
properties. Our definition is a generalization of Leites,'” Oh-
nuki and Kamefuchi,® and Rittenberg and Wyler.'? In Sec.
1V, we study the groups of matrices with o-symmetric pa-
rameters and their Lie algebras. In Sec. V, we give a natural
way to associate a superobject with a o-symmetric one.

We hope that this work will be a first step to the general-
ization of the theory of supersymmetry.

We express our thanks to the referee who helped us to
correct some errors contained in the original version of this
paper.

Il. -SYMMETRY (GENERALIZED SUPERSYMMETRY)
Let & be a field whose characteristic is not equal to 2 and
let G be an abelian (additive) group.
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Definition 2.1: A mapping o: G X G~k is a sign {com-
mutation factor in terms of Sheunert') of G, if o satisfies

i) ala+ By)=olayo(By)

(ll) 0'((1, B)a'( ﬂ’a) =1,

for any a, 3, y€G. The pair (G,o} is called a signed group.

A base field £ and a signed group (G,o) are fixed
throughout this paper. It is easy to see that o{e,) is either 1
or — 1 for any aeG. An element a of G is called even (resp.
odd ), f ola,a) = 1 (resp. — 1). Here G, (resp. G,) denotes the
set of all even (resp. odd) elements of G. When G, =0, G is
called even. Here G, is a subgroup of G of index at most 2 and
we have G = G, U G, (disjoint union).

A G-graded (associative) algebrad = @ o4, overkis
called a-commutative or o-symmetric, if

ab = ola, B )ba

holds for any a, BeG and aed,,, bed 4.

Let V= @, V, be a G-graded vector space over k.
Let T (V) be the tensor algebra of ¥ over k and I be the ideal of
T (V') generated by the elements of the form

(2.1)

x®y—oapB)y®x,

where a, f€ G and xe V,, yeV ;. The quotient algebra
UV)=T( V')/I is o-commutative and is called the o-sym-
metric algebra of V over k.

Let 4 and B be two G-graded algebras over k. The G-
graded vector space

A ®kB = @aeG( ®B +y=a(AB ® BBy))
is a G-graded algebra, if we define the multiplication by
(@®b)(ced)=o(Bylacebd)

for B, yeG and aed, beBg, ced,, deB. The algebrad ® B is
called the graded tensor product of A and Bover k. If 4 and B
are o-commutative, sois 4 8 , B.
Example2.2:LetG =Z,® - & Z,bethe direct sum of
[ copies of Z, = Z /2Z. Let i = (0,...,0,1,0,...,0)cG be the ith
unit vector. If we define o{i,j) to be 1 or — 1 for all i,
J=1,...,Iwith i< j, o can be uniquely extended to a sign of G.
Let V= @& V, be a G-graded vector space over the real num-
ber field R such that V; is a one-dimensional vector space
over R with a generator of grade i. The o-symmetric algebra
U(V) of V over R is the generalized number system of Oh-
nuki-Kamefuchi.®®
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Example 2.3: Let n be a positive integer. Let G = Z,
@ - @& Z, beadirect sumof 2/ copiesof Z, = Z /nZ. Define
a sign of G by

oli,j) = [exp(Zml — 1/n), .
1, otherwise,

fori,j = 1,...,2/ with i< j, where i is the same as in Example
2.2. A G-graded vector space V is also defined in the same
way as in Example 2.2. Then the o-symmetric algebra U (V)
of V'is the operator algebra appeared in the theory of quark
confinement in SU(n) gauge theory by ’t Hooft.'®

Example 2.4: The quaternion field H is considered to be
a o-commutative algebra over R as follows. Let {1, j,k } be
the usual basis of H. Let G = Z, & Z, and define a sign o of G

ifj—i=1,

by ol(l,m),(n, p)) = (— 1)™" =" for I, m, n, peZ,. The grada-
tion of H is given by g(1) = (0,0), g(¢) = (1,0), g{j) = (0,1) and
glk) =(L1).

Definition 2.5: Let Fbe a o-commutative algebra over k.
A G-graded algebra L = & ,.;L, over k with bilinear oper-
ation (.,.) is called a G-graded Lie a-algebra over F, if the
following hold: (i) L is a G-graded left F-module, that is,
aXeL,, gforanya,BeGand ac F,, Xe Lg;

(i) <(aX,Y)=a(X,Y), foranyaeFandX, YelL;

(2.2)
(iii) (X, Y) +ola, B){(Y,X) =0, forany a, feG and
XeL,, YeL ,; (2.3)

(iv) oy, (X AY,Z)) + o( By){Z (X, Y))
+ola, BY,(Z,X)) =0,
for any a, B, yeG and XeL,,, YeL 4, ZeL,.

If the characteristic of & is 3, we need to add the identity
(X,(X,X ) = 0. Our definition above is a combination of
Sheunert’s generalized Lie algebra'* and Rogers’ graded Lie
module.® Let a, feG and aeF,, XeL,, YeL. Then by (2.1)-
(2.3) we easily have

(X,aY) =ola,Bla(X,Y).

In this sense the operation {.,.) is F-bilinear.

The identity element of G is always denoted by 0. For a
G-graded Lie o-algebra L over F, the component L, of grade
0 of L is an (ordinary) Lie algebra over & and called the Lie
partof L.

Definition 2.6: A mapping ¢: G X G—k \ {0} iscalled a
Jactor system (multiplier in terms of Scheunert'?) on G, if it
satisfies

(i) dla,B+1d(BY)= dla,B)dla+ By)
for any a, S, yeG,

(2.4)
(ii) ¢(0,0)=1.
It follows from (2.4) that
¢ (a,0)= ¢(0,a)=1, (2.5)
$la,—a)= ¢(—aal= ¢aB)d(—aa+ B)
(2.6)

for any «, feG.

As is well-known, if a factor system ¢ on G is given, we
can construct a G-graded o-commutative algebra
C= & ,C, overk, called the crossed product of k and G as
follows: C, is a one dimensional vector space over k with a
generator u, of grade a. The multiplication in C is given by
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ua'uﬁ = ¢(a’ﬁ)ua+ B
for a, BeG. By (2.5), u, is an identity element of C. The fol-
lowing is due to Scheunert.!*

Proposition 2.7: Let (G,0) be an even signed group and
assume that G is finitely generated. Then there is a factor
system ¢ on G such that

ola, B)= ¢ la,B)/ ¢ (Ba)

for a, BeG. Moreover, if |o(a, B)| = 1 for all @, BeG, we can
choose ¢ so that |4 (a, 8)| = 1 for all @, BeG.

For the later use we extend the signed group (G,o) as
follows. Let

G=GeZ, (2.7)
and define a sign & of G by
alla,m),( Bn)) = ola, B) — 1)™, (2.8)

for a, feG and m, neZ,.

. SUPERDETERMINANT

In this section F = @ s F, is a G-graded o-commuta-
tive algebra over k wih identity element 1.

A finite set / is called a G-set, if it is linearly ordered and
a grade g(i)eG is assigned to every element { of . Let / be a G-
set. Another G-set — I = { — j; iel } is defined in such a way
that — i< — jifj<iandg( — i) = — gli) for i, jel. A subset
1" of I'is a G set with the order and the gradation of I restrict-
edto /'. Here |I | denotes the cardinality of 7. We also define
gll) =2, gli).

Definition 3.1: Let I and J be G-sets and let acG.
A |I|X|J | matrix M = (M ;) over Fis called an I XJ matrix
over F of grade «, if

MJI‘EFg(i)f gN)+ a2
for every iel and jeJ. An I XJ matrix over F of grade O is
most important and is called simply and I XJ matrix over F.

Let 7, J, and K be G-sets and let a, ScG. Let M be an
I XJmatrix over Fof grade « and N aJ X K matrix over Fof
grade . Then the product MN is an I XJ matrix over F of
grade @ + f3. For an element f of F of grade yeG, we define
the scalar multiplications fM and Mf by

(M) =o(gli,yyM,; and (Mf); =o{g(j)»)M }(13’-1
1)

Then the natural associativity properties are fulfilled and

fM = U(V,(Z)Mf
holds. Therefore we have the following.

Proposition 3.2: Thealgebraofall |7 | X |J | matrices over
Fis a G-graded algebra over F, in which the I X I matrices of
grade aeG form the homogeneous component of grade a. It
is a G-graded Lie o-algebra over F with operation (-,-) de-
fined by

(M,N) =MN — ola, BINM
for I X I matrices M and Nof grade a and S, respectively.

The G-graded Lie o-algebra in Proposition 3.2 is called
the general linear Lie o-algebra of degree I over F and is
denoted by gl(I,F). The Lie part of gl{,F}), that is, the Lie
algebra of I X I matrices over F (of grade 0), is called the
general linear Lie algebra of degree I with parameters in F,
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and is denoted by gl(I,F). Note that there is the canonical
isomorphism of F & , gl(Z,k ) onto gl(I,F) which sends fe M
to fM.

A G-set I is called even [resp. odd ), if the grade of every
element of I is even (resp. odd). If 7 is either even or odd, I is
called unmixed. An I X J matrix over F(of grade 0) is called
even (resp. odd, unmixed ), if IUJ is also.

We shall define the determinant first for odd matrices,
next for even matrices, and finally we shall unify them.

Let I and J be G-sets with || = |J|. Assume that J is
odd. Let x/ (jeJ) be indeterminates of grade g(,j) and let
k [x] = k [x/; jeJ ] be the o-symmetric algebra generated by
x/(jeJ ) over k (the o-symmetric algebra of the vector space
with basis {x/; jeJ | over k).

Definition 3.3: Thedeterminant det Mofan/ X Jmatrix
M withJodd isdefined by the equationin F[x] = F® .k [x],

S I My0x™ = det M-,
7 el Jed

where 7 ranges over all the bijections of I to J, and Il and
I, mean the ordered product, for example, IT,. Xl =xIxk
X" T = { jis JasersJn ) @01 < J2 < = < Ju-

Next, let J be an even G-set. Let (G,) be the signed
group defined by (2.7) and (2.8). Let y/ (jeJ ) be indetermin-
ates of odd grade ( g(j),1)eGandletk [ ] = k [ y%je/ ] bethe
o-symmetric algebra generated by y’ (jeJ ) over k.

Definition 3.4: The determinant det M of an I X1 ma-
trix M with J even is defined by the equation in

Flyl=Fek[y],
2 HMi ) ynm = det M'Hyj’
T el =

where 7, I1,;, I1_; are the same as in Definition 3.3.

Our determinants have similar properties to those that
the ordinary determinants have.

Proposition 3.5: Let I and J be G-sets such that | | = |/ |
and J is unmixed. Let M be an I X J matrix over F Then we
have the following.

(i} det MeFy,) .-

(ii) Letiyelandlet L and Nbel XJ matrices such that
Mp=Lj+ NpforeveryjeJand M; = L', = N, for every

jeJ and iel with i #i,. Then det M = det L + det N.

(iii) Let i; and , be different elements of I such that
gli,) = gli,). Assume that W/ is unmixed. If M’ = M % for
every jeJ, thendet M = 0.

Proof: Since (i) and (ii) are clear by the definitions of
determinants, we only prove (iii). Assume Ju/J is odd and
iy <i,. Let 7 be abijection of I toJ. Let #' be the bijection of I
toJ determined by 7'(i,) = #{i,), 7'{i5) = w(i,) and 7'(i) = (i)
for i#i,, i,. Then

detMHx’—ZHM’ x™¥

jeJ T
contains a pair of terms
HM;’,mx”“" = e Mix* .. Mix! ... (3.2)
el
and
H ML, x" = . Mpx' o Mix* ... (3.3)
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We have g(Mix"*)= gli)— glk)+glk)= g(i;) and
g(M #x') = gli,). Hence, if we interchange M ix* and Mix'/
in (3.2), of gli,), g(iz)) = — 1 comes ont. Therefore the terms
(3.2) and {3.3) cancel, because MY = Miand M) =M": It
follows that det M = 0. The case when JUJ is even is similar.

Theorem 3.6: Let 7, J, and K be G-sets such that
[I|=|J| =|K| and JUK is unmixed. Let M be an I XJ
matrix and N a J X K matrix. Then we have

det MN = det M-det N. (3.4)

Proof: Let us assume that JUK is odd (the even case is
similar). We have

det M-det N- [ x*=detM STIN 4x™
kekK T jed

= 3 dec MI[ ¥ 15

Since g(N / ,x™/) = g(j), the last term is equal to

z E H MumN “‘mx”"“’ — 2 z H

VIS §

X ML, N #x40 (3,5)

where 7 (resp. i, v) ranges over all the bijections of J (resp.
LI)to K (resp. J,K ). On the other hand

det MN-T] ** =3 ] (EM' N{w)x“”

keK v el

— E z HM L N;‘:‘(:')XW)

where v ranges over all the bijections of / to K and j ranges
over all the (not necessarily bijective) mappings of I to J. If {i
is not bijective, there are /, and i, in I such that i, <, and
A(i)) = fili,). For a bijection v of I to K, let v' be the bijection
of Ito K determined by v'(i,) = v(i,), ¢ (i) = v(i,), and
v'(i) = v(i) for i#1i,,i,. Then the two terms I1,_, M, N f{x""
and IT,., M%) x"" in (3.6) cancel in the same way as in the
proof of Proposition 3.5. Thus (3.6) is equal to (3.5), estab-
lishing the proof of the theorem.

LetIandJ be G-setsand K ' and J ' be subsets of T and J,
respectively. Let M be an I XJ matrix. By an I’ X J' minor
matrix of M we mean the I X J' matrix whose (i, j) entry is
M’ for (i,j)el’XJ’. Let il and jeJ. The
(I\{io})X( \{Jjo})-minor matrix of M is denoted by
M (iy, jo). When J is unmixed, we define

oll, Jiio, jo) = ol gljo), &) — &) + &lJo) — 8lio))

X [ €ot gli), glio))- [ et glio), &(1)s
i<iy J< o
where €is 1 or — 1 according as J is odd or even.
Theorem 3.7. Let M be an unmixed / XJ matrix with
|7| = |J|. Then we have

(3.6)

> all, Li, )M % -det M (i, j) = &5 det M, (3.7)
7
for any i, kel, where & is Kronecker’s delta.

Proof: When i = k in (3.7), the usual calculation of the
terms of det M containing M, gives the desired formula.
When i+ k, Proposition 3.5 (iii) gives the desired equality.
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Corollary 3.8: Let M be an unmixed 7 XJ matrix with
|| = |J|. Then Misinvertible if and only if det Mis an inver-
tible element of F. In this case the inverse N of Mis a J X1
matrix given by

N{=o{lJ,,j)det M (i, j)-(det M)~ ", (3.8)

Proof: Suppose that det M is invertible in F. Then by
Theorem 3.7, the matrix NV given by (3.8) is a right inverse of
M, that is, MN = E,, where E, is the identity / X I matrix.
By Theorem 3.5 we have det M-det N = 1. Thus det Nis also
invertible in F (note that a homogeneous one-sided inverse is
atwo-sided inverse in a o-commutative algebra) and hence N
has a right inverse M'; NM’'=E,. Now we have
M=M(NM')={MN)M' =M’ This shows that N is the
(two-sided) inverse of M.

An I XJ matrix M is called square if I=1,ul,,
J=J\uJ,, I, and J, are even, I, and J, are odd, and
[, = /4|, |I2] = |J2|- Let A (tesp. B C, D) be the I, XJ,
{resp. I, XJ,, I, X J,, I, X J,)-minor matrix of M. In this case
we write

u=(¢ p)

Definition 3.9: For a square I XJ matrix M over F of the
form (3.9), the superdeterminant sdet M of M is defined by

0, ifdet A or det D is not invertible,
o(g(Jy) — gl>), gWa) — glly))
X (det 4 )(det (D —CA ~'B))~',
Since all the elements of B and C are odd and hence
nilpotent, we see that M is invertible if and only if both 4 and

D are invertible. Hence by Corollary 3.8, we have the follow-
ing.

(3.9)

sdet M = (

otherwise

Proposition 3.10: A square I XJ matrix M over Fis in-
vertible if and only if sdet M #0.

Theorem 3.11: Let M be asquare/ X Jmatrixand Nbea
square J X K matrix over F. Then we have

sdet MN = sdet M-.sdet . (3.10)

To prove the theorem we need the following lemma.

Lemma 3.12: Let I be an even G-set and J an odd G-set.
Let Bbean] XJmatrixand CaJ X Imatrix over F. Then we
have

det(E, + BC)- det(E, + CB)=1. (3.11)

Proof: We first claim that if (3.11) is true for B = B, and
B = B, (C is arbitrary), then it is true for B=B, + B,. In
fact,

det(E; + (B, + B,)C)-det(E;, + C (B, + B,))
= det(E, + B,C(E; + B,C)™)
X det(E; + B,C)-det(E, + CB,)
Xdet(E, + (E;, + CB,)"'CB,) = 1.

Therefore to prove the lemma, we may assume that only
asingle (i, jo)-entry of B is nonzero. Then an easy calculation
shows det(E, + BC)=1+B%C/} and det(E, + CB)

=1+ C{B*%. Since B4 Ch = — C/B% and {B® C )
=0, we find det(E, 4+ BC)-det(E, + CB) = 1.
Proof of Theorem 3.11: Let
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A B) (X Y)
M= = .
(c p) ™ N={z w

We may assume that A, D, X, and W are all invertible; other-
wise both sides of (3.10) are O by the remark before Proposi-
tion 3.10. First assume Z = 0, then

sdet MN = €, det AX-(det(CY + DW
— CX(AX)"\AY + BW))~"
— ¢, det AX-(det(DW — CA ~'BW))~"
= ¢, det A-det X-(det W)~ '(det(D — C4 ~'B))™!
= €,€, det A-(det(D — C4 ~'B))" ".det X

x (det W)~ 1, 512

where €, =o(gK,)— glK,), gK;)— gll,), and e
=o(gl)) — glK)) — glVo) + glK,), glJo) — gll)). Hence
€,6; = ol glJ)) — &), glJo) — gll))lo(g(K)) — g(K,), 8(K3)
— g(J,)). Therefore, (3.12) is equal to sdet M-sdet N. The
case B = O s treated similarly.

Next assume C = Y = 0. Then, using Lemma 3.12 we
have

sdet MN = ¢, det(AX + BZ )-(det(DW
— DZ(AX + BZ)"'BW))~!
— €, det(AX + BZ )-(det W)~
X (det(E,, — Z (X + BZ) 'B)) '(det D)~
= €6, det{AX + BZ }det(Ey, — (AX + BZ)™'BZ)
X (det D)~ (det W)~!
=€,€, det AX(det D)~ '(det W)~'

= €,6,€; det A-(det D)~ ".det X-(det W)™,
(3.13)

where €, = o{g(K,) — g(K;), g(K,) — glL1)), € = o(g(K>)
— g%), glh) — glh)), and & =o(glV)) - gKi), gV2)
— g(I,)). Thus (3.13)is equal to sdet M-sdet . Finally, since

A 0 E, A7'B
(s )
C D—-CA B 0 E,
Y 0 ) (EK Xy )
w—zx'v/ \0 E. )’
the general case can be reduced to the above three cases.
Definition 3.12: For an I XJ matrix M over F, a
(—J)X(— I) matrix M 7 called the supertranspose of M is
defined by
M7 2] =oalgl) gl)) — gIM;.
Proposition 3.13: (i) For an I XJ matrix M and aJ XK
matrix N, we have
MN)"=N™M".
(ii) For an 7 X I matrix M, we have sdet M 7 = sdet M.

Proof: The assertion (i) would be proved by an easy cal-
culation. To prove (ii), let

u-(t 2

X
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be an I X I matrix expressed as (3.9). Then

'A T C T
T
M= (B T D T)
and by (i) we see that 4 " (resp. D T)is invertible if and only if

A (resp. D)isinvertible. Thus assuming 4 and D are inverti-
ble, we have

sdet MT=detA " (det(DT—BT(47)"'C"))~!
=det A "(det(D — C4 ~'B)T)" ..
Therefore we may prove (ii) only for an unmixed matrix M.
Assume that M is odd (the even case is similar). Let x’ and
y ~ ! (i) be indeterminates of grade g(i) and — g({), respec-
tively, and k [x, y] be the o-symmetric algebra generated by
x',y~'(iel)over k.In F[x,y] = F® , k[x, y] we have

detMT'Hxi- H y!
= [Jx'detM™ [ »*
i€l —ie—1
=STI* I otetrli &l — gt
T el —ie—1
X M T =, (3.14)

where 7 ranges over all the bijections of I to I. Since x'M ™)
y ~ "is of grade 0 and commutes with any element of F [, y]

and ofg(mld)), — glm(i))) =o(gl), —gl))= —1, (3.14) is
equal to

ST My = 3 T My

T el T

II»

—ie -1

=detM J[x'- ] » "
iel —ie —T
It follows that det M 7 = det M.
Definition 3.14: For an I X I matrix M over F, the super-
trace str M is defined by

str M = ; ol i), giM ;.

Proposition 3.15: (i) For an I XI matrix M, we have
str M = str M ™. (ii) For an I XJ matrix M and J X I matrix
N, we have str MN = str NM. The proof of Proposition 3.14
is easy and we omit it.

IV. LINEAR LIE GROUPS AND ALGEBRAS WITH o~
SYMMETRIC PARAMETERS

Throughout this section & is the real number field or the
complex number field.

Definition 4.1: A G-graded algebra F= @ ,.;F, overk
is called a G-graded Banach algebra, if it satisfies (i) F, is a
complete normed space for every aeG (the norm of aeF,, is
written as [|al|); and (ii) for any @, SeG and aeF,, beF 4,
llad || <lla]|-]| .

Example 4.2: Let x; (il) be indeterminates of grade
glileG (I is finite or infinite and is linearly ordered). Let
k [x] = k [x,; i€l ] be the o-symmetric algebra generated by
x; (il )over k. Let K = {n,},, be asequence of non-negative
integers indexed by 7 such that at most finitely many n, are
positive and that n,<1 if g(i) is odd. Then the ordered pro-
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ducts x* = I1,_,x}’, where K ranges over all such sequences,
form a linear basis of k [x] over k. For abijection 7 of I to I we
define the number o(K,7) by x* = o(K,7) I, x,7} and set
6(K)=min, |o(K,7)|. We define a norm | f{x)|| of
flx) = Zgaxx ek [x] by

I/ Gl =;5(K)|‘1K|'

Let F, be the completion of k[x], for aeG. Then
F= o ,sF,is a o-commutative G-graded Banach algebra.

In what follows, Fis o-commutative G-graded Banach
algebra over k with identity element 1. Let 7 and J be G-sets.
We define a norm ||M || of an 7 X J matrix M over F by

i =( 3 Igie)”

Proposition 4.3: Let M be an I XJ matrix and N be a
J X K matrix over F. Then we have

|MN || <|| M ||| ¥ ||

Fis called locally finite if F, is finite dimensional over &
for every aeG. By proposition 4.3 we have the following.

Proposition 4.4: The algebra of I X I matrices over Fis a
Banach algebra with the norm (4.1). It is finite dimensional,
if Fis locally finite.

By the general theory of Banach algebras, we can define
the exponential mapping expon gl(/,F ); foran ] X I matrix M
over F we define

© M n

expM 'Z’O e

The following theorem would be proved in a similar
way to the usual case, and we omit the proof.

Theorem 4.5: For an I X I matrix M over F we have

sdet(exp M ) = exp(str M).

Thegroup ofallinvertible / X Imatrices M over F forms
a topological group with respect to the relative topology in
gl(Z,F). It is called the general linear group of degree I with

parameters in F and is denoted by GL(L,F).
Let & be a closed subgroup of GL(Z,F). Define

(4.1)

LG )= {Megl(I,F); exp tMe¥ for all real numbers ¢ }.

Then .£(¥) forms a Lie subalgebra of gl(I,F) over the real
number field; we call it the Lie algebra of 4 .

Theorem 4.6: Let ¥ be a closed subgroup of GL(I,F)
and assume that F is locally finite. Then

{exp X,exp X,;r>1, X,€.2(9)}

is the connected component of & containing the identity
element of ¥.

The proof of Theorem 4.6 is also standard. For the gen-
eral theory of groups embedded in a Banach algebras, we
refer to Yoshida.'®

We give two types of closed subgroups of GL(Z,F). The
special linear group SL(I,F ) is defined to be the group of those
matrices whose superdeterminants are 1. Let ¥ be an inverti-
ble ( — I') X1 matrix over F. Let L, (I,F) denote the group of
W-preserving I X I matrices over F, that is,

Ly(IF) = {MeGL(LF ;M T¥M = ¥ }.
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We define Lie subalgebras sl(1,F) and I (I,F) of gl{I,F) by
slI,F) = {M e gl(I,F);str M =0}

and
1 (ILF) = {Megl(LF,M "W + WM = 0}.

Easy calculations using Propositions 3.13 and 3.15 show
that L ,(I,F) forms a group and /, (/,F) and sl(Z,F ) form Lie
algebras.

Proposition 4.7: We have (i) gl(I,F) = £ (GL{LF)), (i)
si{I,F) = .Z(SL(L,F)), and (iti) !, (I,F) = L (Ly(LF)).

Proof: (i) is clear, (ii) follows from Theorem 4.5, and (iii)
can be proved by using the formula ¥(exp M )¥ ™!

= exp(¥M¥ ~).

Let .# be a Lie subalgebra of gl(Z,F ). Then .& is called
well-parametrized in F, if there is a free G-graded submodule
L of gl (I,F) over Fsuch that .#° = gl{I,F )nlL, in other words,
there is a set {e; ] of homogeneous elements of gl (I,F) such
that the e,’s are linearly independent over F and

L =0 F _4ye,

where g{i) is the grade of e;,. A closed subgroup of %of
GL(LF)is called well-parametrized in F, if so is the Lie alge-
bra of .

The algebras gl(/,F) and sl(,F'} are well parametrized.
The algebra /, (I,F) is well parametrized if all the entries of ¥
are in the base field .

Let L = @ ,.L, be a G-graded Lie o-algebra over &
(not over F, see Definition 2.5). Assume that L is finite di-
mensional over k. Then by the generalized Ado theorem
(Theorem 3 of Scheunert'#), L has a faithful graded represen-
tation in some finite dimensional G-graded vector space V
over k. Let I = {i} be a homogeneous basis of V. This I can
be considered to be a G-set and L is regarded as a graded
subalgebraof glil,k). LetL=F® L and . = &, (F_,
®L,). Then L and .¥ are, naturally, subalgebras of F® ,
gl(Z,k ) = gl(I,F)and of gl{1,F ), respectively. We clearly have
. = gl(I,F)nL and so .7’ is well-parametrized in F. Thus,
we have the following.

Proposition 4.7: Let L be a finite-dimensional G-graded
Lie o-algebra over k. Then

f: e)aeG(F—a ®kLa)

is considered to be a well-parametrized Lie subalgebra of
gl(Z,F) for a suitable G-set I.
Let L and .7 be as in Proposition 4.7. Define

9 ={exp X, ~exp X ;r>1, X2}

Then ¥ is a subgroup of GL(I,F). Though ¥ is not necessar-
ily a closed subgroup, we may be permitted to say that & is
the Lie group with parameters in F associated with L.

V. SUPERIZATION

Let F be a o-commutative G-graded algebra with 1. In
this section G is assumed to be finitely generated.

Let (G,5) be the extended signed group defined by (2.7)
and (2.8). Define a mapping e: G—Z, by €la) = (1 — ola,a))/
2 for aeG, that is, ola,a) = ( — 1)%%. Then € is a homomor-
phism of groups. Set

G' = {a' = (a€la)lacC },
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then G’ is a subgroup of G isomorphic to G. Letting
0’ =0|g g »(G',0')is an even signed group. By Proposition
2.7 there is a factor system ¢ on G ' such that
oe,B')= ¢l B') ¢(B"a),

fora',B’eG’.LetC = & .. k-u, bethecrossed product of
k and G’ with respect to the factor system ¢. Since (G,0) and
(G',0') are embedded in (G,5), Fand Care considered to be 5-
commutative G-graded algebras in an obvious way. The
graded tensor product F® , C is a 5-commutative G-graded
algebra and all the (associative) algebras in this section are
regarded naturally as its subalgebras. Let Fbe the subalgebra
of Fg ,C given by

_Fz $zzeG(I;‘a ®u—a')’

where o’ = (a,€(a)). Now F is not only a G-graded algebra
but also a supercommutative Z,-graded algebra in the fol-
lowing way. Let us identify the subgroup {(0,0),(0,1)} of G
with Z,. Since a + ( — a') = (0,¢l)), Fis Z,-graded algebra
with the even component & ., (F, ® # _,) and the odd
component & .., (F, ®u ). Since F® ;C is g-commuta-
tive, Fis supercommutative.

Let I be a G-set. We define a Z,-setI = {i;iel } as fol-
lows: i < j if i < j and g(i) = €( gli)) = (0,€( gli))). Now let U,
be the 7 X I matrix over F® , C defined by

(U)=6;0u

for i, jel, whereg'({) = ( g(i), €( g(i))}eG '. Then U, is an inverti-
ble square matrix satisfying

g'ti)>

UrUu_,=2, (5.1)
where T is a ( — )X ( — 7) matrix given by
2 ~1=5lo(gli), glig (8'(0), — &()uo. (5.2)

For an 7 X J matrix M over F we set
M=U;'MU,.

Here Mis an] X J matrix over F, _t_hat is, a matrix with super-
symmetric parameters. We call M the superization of M. A

calculation [using (2.6)] shows
Mi=oigli,gli)— ) 6 (&), &) — g~
XM;® g g (5.3)

The following is easily proved by the definition of superiza-
tion, Theorem 3.11, and Proposition 3.15.
Proposition 5.1: For an I X I matrix over F we have

(i) sdet M = sdet M,

(i) str M = str M.

From now on we assume that k is the real or the com-
plex number field and Fis a (o-commutative) G-graded Ban-
ach algebra. Moreover, we assume that o satisfies the condi-
tion |o{e, B)| = 1foralla, BeG. Then, |o'(@’ ,B8)| = 1forall
a',B'eG ', and therefore the factor system ¢ also can be cho-
sensothat |¢ (@', B')| = 1foralla’,B'eG . Thus Fbecomesa
G-graded Banach algebra with the norm

“xa U _ a’ ” = ”xa “’
for x,€F,.

Proposition 5.2: For an I X I matrix M over F we have
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exp M =exp M.

Definition 5.3: Let ¥ beaclosed subgroup of G (1,F ) and
% a Lie subalgebra of gii,F). Then ¥ =U;'%U, is a
closed subgroup of GL(I,F)and .¥ = U '.# U, aLiesub-
algebra of gl(I,F ). They are called the superizations of & and
&, respectively.

We define gl;(I,F) to be an algebra of those matrices N
in gI(I,F) that satisfy

Ni€Fgy gy = Fon— an ®Ugin- g0-
In general, for asubset & of gl(I,F ), we write & ; for gl (I,F)
n% . For example sl;(IF) = glg(LF)nsi(IF).

Proposition 5.4: We have

) elilLF)=gls(LF), GL{LF)=GLs(LF),

(i) SNLF)=slz(I.F), SL{LF)=SL4(LF),

(iii) 1o (LF) =lsp6@F) L,IF) =LsyeLF),

where J is the I X I matrix given by (5.2).
Proof: In virtue of (5.3) we readily find

gllLF) = glg(LF). (5.4)

Next we prove the formula [,(LF) =1 so.LF). Let
Mel,(IF), that is, M "¥ + ¥M = 0. The last equation is
equivalent to

UMT(WU)YUTU_ )",
+UIU_,(U_,)"'WwU, U7 'MU, =0.
Hence by Proposition 3.13 and (5.1) we have

MTI¥ + UM =0.

Therefore, Mel , (IF) if an only if Mel 5 (I,F). This together
with (5.4) shows the desired formula. We omit the proof of
the other formulas.

By Proposition 5.2 we have the following.

Proposition 5.5: For a closed subgroup of GL(LF) we
have

@)= 2(9)

Let L be a finite dimensional G-graded Lie o-algebra
over k. As we did in Sec. IV, we regard L as a G-graded
subalgebra of gl(Z,k ) for a suitable G-set[. ¥ = & .. (F_,
® L) is a subalgebra of gl(I,F). Let XeL. We define a ma-
trix Xegl(I,k ) by
I

parametrization in exp
L L e b
‘ superization ‘ superization ‘
L ¢ . F
parametrization in F exp
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X1 =o(gli)— gli), gl #(g'j) — &0 &'0) "X}
(5.5)
Now we assume XeL, for aeG, and let feF_ . Then the
scalar product fX = f®X defined by (3.1) is in ., and by
(5.3) and (5.5) we have

X =U;"fXU, =(fou,)X.

Here X is called the superization of X. Moreover, we call
L = {X, XcL } thesuperization of L. As the following propo-
sition shows, L is a Lie superalgebra and is essentially
Scheunert’s superization'* of L.

Proposition 5.6: L is a subalgebra of gl(Z,k ), and soitis a
G-graded superalgebra over k.

Proof: Let a, BG and let XeL,,, YeL,, feF _,, and
geF _ ;. We have

(5.6)

Uy ' fgXYU, =o{ — Ba)U XU, U, ' gYU,
=o(Ba)fou, ) X(geus )Y
=(— 1P (o, B fg® Uy , 1 XY.

Similarly we have
Ui RYXU, = (= )" (B"a) @ uy . ) ¥X.

Hence
(fg®uy, 5) XY) =U;"'R(XY)U,
=(— 1)@, B) g ® U+ )
X (XY — ola, B)o'(@’, B')~'TX)
=(— 1)@ (o, B)
X(fg®u, B.)(X?).

Since F can be taken arbitrary, we conclude
XY) =(— 1) (', B)"" (X,Y)eL.

This shows that L is a subalgebra of g]l(f,k )
By (5.6) we have the following.
Proposition 5.7: Under the above situation we have

QaeG(F—a ®kLa) = QaeG(F‘—a ®kza)‘

Finally, we summarize the relations between the con-
cepts given in Sec. IV and V in the following diagram:

superization.

[

*V, Rittenberg and M. Scheunert, J. Math. Phys. 19, 709 (1978).

SA. Rogers, J. Math. Phys. 21, 1352 (1980).

SA. Rogers, J. Math. Phys. 22, 939 (1981).

"F. A. Berezin, The Method of Second Quantization (Nauka, Moscow,
1965), English translation (Academic, New York, 1966).

8Y. Ohonuki and S. Kamefuchi, J. Math. Phys. 21, 601 (1980).

Y. Kobayashi and S. Nagamachi 3373



°Y. Ohonuki and S. Kamefuchi, Lett. Nuovo Cimento 30, 379 (1981). “M. Scheunert, J. Math. Phys. 20, 712 (1979).
%Y. Ohonuki and S. Kamefuchi, Quantum Field Theory and Parastatistics 5V, K. Agrawala, Hadronic J. 4, 444 (1981).

(U. Tokyo P.,Tokyo, 1982). 16G. °t Hooft, Nucl. Phys. B 138, 1 (1978).
'Y, Ohonuki and S. Kamefuchi, Nuovo Cimento A 70, 435 (1982). D. A. Leites, Usp. Mat. Nauk 303, 156 (1975).
12y, Rittenberg and D. Wyler, Nucl. Phys. B 139, 189 (1978). '8K. Yoshida, Jpn. J. Math. 13, 7 (1936).

13y, Rittenberg and D. Wyler, J. Math. Phys. 19, 2193 (1978).

3374 J. Math. Phys., Vol. 25, No. 12, December 1984 Y. Kobayashi and S. Nagamachi 3374



Determination of point group harmonics for arbitrary / by a projection
method. lIl. Cubic group, quantization along a ternary axis

Jacques Raynal

Service de Physique Théorigue, Commissariat d I'énergie Atomique Saclay, 91191 Gif-sur-Yvette, Cedex,

France

Robert Conte

Service de Physique du Solide et de Résonance Magnétique, Commissariat d I'énergie Atomique Saclay, 91191

Gif-sur-Yvette, Cedex, France

(Received 3 November 1983; accepted for publication 4 May 1984)

The method described in a first paper to obtain cubic harmonics quantized on an axis of order 4 is
applied to the case of a ternary quantization axis. Projectors on irreducible representations are

expressed with rotation matrices R (0, ¢, 7) and R (, 7r-, 0), ¢ = arccos(1/3), acting on subspaces
of SU(2) invariant under D;. Relations between the descriptions on the two axes of quantization

are derived.

PACS numbers: 02.20. + b, 31.15. + q, 61.50.Em

I.INTRODUCTION

In a previous paper' we presented a method for project-
ing an arbitrary vector of a standard base of group SU(2) on
the irreducible representations of the cubic group O0,. We
have shown how to build projectors on these representations
when the quantization axis Oz is an axis of order 4 of the
cubic group. It is enough to know the laws of transformation
of these representations under the rotation of 77/2 around Oy
and the reduced matrix elements d 7. (m/2). The coefficients
of irreducible representations on the standard base of SU(2)
can be expressed with these reduced matrix elements togeth-
er with the square of their norm. The coefficients of normal-
ized representations are square roots of rational numbers. In
the case of nondegeneracy, the result does not depend on the
choice of the projected vector, except for a sign; in case of
degeneracy, after a Schmidt orthogonalization process, the
norm is still known without an explicit summation, and the
coefficients of orthonormalized representations are also
square roots of rational numbers. In a second paper? one of
us applied this method to the representations of the icosahe-
dral group along an axis of quantization of order 5; in this
case, coefficients of representations are linear combinations
of two reduced rotation matrices for angles S = arc-

cos( + 1/4/5) which are square roots of rational numbers.

When a physical system invariant under the cubic
group is submitted to a perturbation having a ternary sym-
metry, it is convenient to express the cubic harmonics using
the axis of quantization along an axis of order 3. This is the
subject of this paper. Such an axis has been chosen very rare-
ly by authors who have given tables.>>

In the second section, we list Euler angles (@, 5, ¥) of
group elements relative to a ternary axis and we give the S
dependence of the transformations of irreducible representa-
tions. In the third and fourth sections, we derive the projec-
tors on half-integral and integral representations. This ques-
tion is similar to the case of icosahedral harmonics: a vector
|jm) may be the sum of more than two irreducible represen-
tations; in one case, it is the sum of two different components
of a similar kind of representation.
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In Sec. V, we derive the coefficients along a ternary axis
of cubic harmonics whose coefficients along a quarternary
axis are known, and vice versa. For multidimensional repre-
sentations, since coefficients of different components are
strongly related, it is possible to express ternary coefficients
of all components using quaternary coefficients of an arbi-
trary component. The last section shows that both matrix
elements of projectors and coefficients of transformations
between ternary and quaternary description are square roots
of rational numbers.

il. REPRESENTATIONS OF THE CUBIC GROUP WITH A
TERNARY AXIS OF QUANTIZATION

As Oxyz is the direct reference frame defined by three
axes of order 4, we choose the ternary axis of quantization
0Z in the first octant and the twofold symmetry axis 0Y as
the second bisectrix of the Oxy plane:

b VA IS VAN AN
Y= 1wz 1/2 O v (1)
Z W I VA R VA W AN

The two rotations of 277/3 around 0Z and 7/4 around
Oy, whose Euler angles (a, B, 7) relatively to 0XYZ are, re-
spectively, (0, O, 27/3) and (27/3, @, S7/3), ¢ = arccos(1/3),
are a system of generators of the group, whose 24 elements
have the following Euler angles:

a=0, B=0,7m v=0,27/347/3, (2a)

a=0,2x%/3,4r/3, B = arccos(1/3), y =w/3, m, Su/3,
(2b)

a=1m/3,m 57/3, B = arccos( — 1/3), ¥y =0, 2%/3, 4w /3.
(2¢)

The double cubic group is obtained by adding to that
list the 24 elements derived by addition of 27 to a.

An arbitrary group element is represented, in the basis
of vectors |jm) of an irreducible representation &, of SU(2),
by the rotation matrix having the corresponding Euler an-
gles. Our reference frame 0XYZ has been chosen so that the
representative matrices of the two nontrivial rotations we
will have to deal with, i.e., R (0, ¢, 7)and R (7, m — @, 0), are
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symmetric, real for integer values of j, purely imaginary for
half-integer values of j.

The six elements (2a) define what is called the D, group.
Let us introduce the subspaces of &, which are invariant
under D;.

For integer values of j, there are four:

~ 1
P N
L) [w"") AT 5,0
. ol m>0
Kim) (= ==, 70,
j 4 1) = (), m=+ 10)}. 3)

For half-integer values of j there are three:

j +3y ={lm), m=+13)}

113y = {lim), m=33)}. (4)

For integer values of j, among the five irreducible repre-
sentations I to I's, two of them, I', and I, behave like &,
and 9, respectively, and we identify their components
|I"; m) with the corresponding standard vectors |jm). Rep-
resentation &, decomposes into [ + Iy, and & into
I, + Iy + I's. We choose

155 £ D =(1/3)2 F2) £ 32 £ 1),

’Fs 6) = 12 O>,
iry+D=—uviz v+ 322, O
T, 0) = (5/3)3 0) + 3(1/v2)(]33) — {3 — 3)).

The behavior of these five representations under a rota-
tion of 277/3 around 0Z and of 7 around 0Y allows us to
determine which subspaces of D, contribute to a given com-
ponent of a given representation (see Table I).

Under the rotation Ry = R (0, 7, 0) of 7 around 07, the
laws of transformation are

|7, 0)—|T, 0),

lrz 0)“*_ ‘rz 0)’

I + i)—>lf3 F1),

\ry + D=\l T 1),

|F4 6)“’ - |F4 0>»

1T £ D—— s F1),

|T5 0)—[T's 0). (6)

These laws are different from the corresponding laws
for a quarternary axis [formula (4) in Ref. 1] because OY is a
twofold axis for the cube and Qy is a fourfold axis.

Under the two rotations R, = R (0, ¢, 7), R, = R (m,
7 — @, 0), whose product is R;R, = R,R, = R (0, , 0), the
laws of transformation are (weusee = 1 forR;,e = — 1 for
R,)

\r, 0y—|I, 0),
[, 0)-— — €| I, 0),
ir3 + 1)—"r3 Fe,

3376 J. Math. Phys., Vol. 25, No. 12, December 1984

TABLES I and 11. Correspondence between irreducible representations of
0, and subspaces adapted to D,. Each of the subspaces adapted to the irre-
ducible representations of D, listed in the first column, is the direct sum of
those subspaces of irreducible representations of O, which are listed in its
row. The first row contains two notations: the one used in the present paper,
adapted from Bethe, and the one defined by Placzek and more widely
known as the Mulliken notation {sec Ref. 1 for references). Our notation is
chosen as follows: |I"; p) notes a component p of a representation I",, i = 1,
..., 8, which behaves under a rotation of D, like its associated base vectors
listed in (3} and (4).

TABLE 1.
o r, I, r, r, Ty
D, A4, A, E T, T,
10 +) I, 0) 175 0)
0 —) (r, 6 (r,0)
|1y \nhy iy |
[-1) ir, =D =l -1
TABLEII
o+ T, r, Ty
D, E’ E" U’
i T 1M =)
1y irb T T
=D ire=H | 1y =h Iry =D

_ 34¢ —2e — 3—¢
|y i) | 2 2
[Ty 0= —2¢ € 2e

Iry —1) _3-—¢ 2 _3+e€
2 2
\Fy 1
x| |, 0) (7)
Iy — 1)
1+ 3¢ 5 _ 1+3€
s D 1 2 2
\r;  0) -1 2 -1 =2
\r, — 1) 143, 1 +3e
2 2
ino b
x5 0}
\rs —1)

For half-integer values of j, among the three additional
irreducible representations I to I, two of them, I'y and Iy,
behave like & ,,, and Z,,, respectively, and we identify
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their components |I; 71) with the corresponding standard
vectors |jm). Representation Zs,, decomposes into
I, + I'y, and we choose

17 £ =W5/3)3 £ F3l3 F9- (8)

Subspaces of D, which contribute to a given component
of a given representation are listed in Table II. Under the
rotation R (0, 7, 0) of m around 0Y, the laws of transformation
are

IFs £ D—+ 1T F1),
Ty £ )— £ 10 FD,

-~ A 9
My £)—+ 10 T, ®l
\I's £ D—>F |l FH-
Representative matrices of transformations R, = iR (0,

@, m), R, = iR (m, m — @, 0) are real symmetric for half-in-
teger values of j, and representations transform under R, like

(2550 (R,

\r, 1) 1 (—v2 1\(ID
(|r7~§) W( 1 x/i)<|1‘7—§))’ 10
s 3)
ITsd)
Iy — 1)
IFy —3)
—-2vI -3 —J6 -1
L —-2V3 0 3 J6
Wil — 6 3 —2v3
-1 V6 —2v3 2
IIs3
1T 1)
Vi -
I —3)

The transformation law of I';, i = 6, 7, 8, under R, fol-
lows from the relation

Roihmm = Ry — 1) 77, (11)

withjg =/, = Ljs=13

Due to parity properties under the action of R, = R (0,
7, 0), we will consider only components | I ) with non-
negative values of 7. |

m=BEN D, == ¥ (-

1 172 — m\/i d (mj)'
‘/2 —;/2(3) )

lil. PROJECTION OF A VECTOR |/m> ON AN
IRREDUCIBLE REPRESENTATION OF THE DOUBLE
CUBIC GROUP FOR HALF-INTEGER VALUES OF /

Two qualitative differences exist with the case of a qua-
ternary axis of quantization.’ First, an arbitrary vector |jm)
of one of subspaces (4) is the sum of at most three, and not
merely two, unnormalized vectors belonging to |I'; 77) sub-
spaces; this implies that we need two group elements, not
merely one, in order to express projectors. Second, subspace
lidyi is invariant under R (0, 7, 0) on the contrary of subspaces
i + ) which are exchanged, and any vector in it is the sum
of two unnormalized vectors belonging to |[I's3) and to
|’y —3) subspaces. These two features also appear for the
icosahedral group,” and the method we follow is quite simi-
lar to that case. .

Let us consider a vector |jm) of subspace |j1):

m={3):-lim) = [Fe 1) + T3 D + 1T Dms  (12)
where the subscript m reminds us that the vector is unnor-
malized and depends on m. The action of R, = iR (0, ¢, 7) on
|j m) yields

m=—- ()R, lim) = (= 12" 5 dd,(p)im')

1

ﬁ ~ A~
=—‘/?|F6%>m +EIFG — D

v2 - 1 - 2 o
‘—Elr7%>m+“/?|r7 —-£>m~ -3—|F8%)m

l ~ \/2 ~
+—v§‘|rs—£)m +T|Fs—%)m, (13)

and the action of R, = iR (7, m — @, 0) on |j m) yields

mE% B):Rojm) = 3 (~ 12 7"d ], (r —@)lim’)

m

=%|r6§>m—%lr6—§>

1 A V2 A a
+ =P D, + 24 -, +§|rsg>,,,

1 ~ 2
—__r el
‘/3| 8%>m+ 3

-~

[Tg —3),,. (14)

Equations (12)-{14) give projections of representations
from subspace | 5) to subspaces |j + 5) i $). Indeed, begin-
ning with nondiagonal projections, elimination of
|Ig —3),, between (13) and (14) leads to

2 d i,

®)}im’). (15)

As for diagonal projections, elimination of two of the three components | I, 5) =16, 7, 8 between (12), (13}, and (14)

yields the pr01cctor on the third one:

mE? (3)~ Ir6 é>m _T z {6m'm +\/€(_ l)l/z_md(ﬁm(¢)+‘/3( I)I/Z_MId(rz)'m(ﬂ.—¢)}lim’> (16)
m'=1/2(3)

Do Dn =g S (B — V8= 12 "d ) 43— 12713, (7 — )} (17
m'=172(3)
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IFS%)m=-;_ {6mm_‘/§(_

1)2=md ), — @)} im"). (18)

For subspace |j ), we must take care that an an arbitrary vector |jm) of that subspace is the sum of two distinct kinds of

unnormalized components of Iy or more precisely

m=3y3): |jm) = | ], + [Tz - _,,

j—my=(—1""(Fy =9, =D _,.)

(19)
(20)

The two vectors |jm) and |j — m) are related by a rotation of 7 round the 0Y axis, and the two representations | Ig),, and
[Ig) _ . aredifferent: |}, is the one for which the vector |1y 3),. can be projected from [jm) and |I'y) _,, the one for which

the vector |y —3)
The action of R, and R, on Eq. (19) yields

mE% B Riljm) = (= 1)2"" X d L, (@)lim’)

1 e ~
=§E (—2v2|I%3),, —2V3|Ts}

— sy, + 6|1y _, — 2V3| T

== (Raljm) = 3 (= 1V "dh,(m — g i)

m

:('3%)( - |r8§)m +\/3|F8 %>m

+2V2I0 Y _, +2V3|T 1) _,. + 6|

)m _\/E'FB _—%>m -

_%>-»m +2‘/§|r8

— 2V3| T

can be projected from the same vector |jm).

Iy =

m

=D ) (21)

D, +2v2|0y =9,

=D .+ =D ). (22)

Elimination of | Iy %) _m between (21) and (22) gives the projector from |j 3) subspace to | %) subspace

1

3 A .
m=—0kls), =— > {(—VA-1"""d0 @)+ (—1)"7""d], (m—@)}lim'). (23)
2 V2 B
EliminationAof Ty —,., [T —3) _,, and therefore |[Iy3) _, between (19), (21), and (22) gives the restriction of
projector on |y 3) to subspace |j 3):
o 1 2v2 1
m=—(3) ryd) =-— [5”',’"_ )2-mgi (o) — — 2=l } 24
=5 2 o5 (= 1) @)= —5 (=1 (T —@)ilim'). (24)

Expressions for projections (15){18), (23), and (24) sim-
plify greatly if, instead of using matrices d /(@) and d '
— @), we take the two following matrices:
AL, =3{—= 12" cosig/2)d ). (@)
+ (= 172 "sinig/2)d D, — @)}, )
B, =3l(—1)2~ " coslp/2)d ). (p)
— (= )2~ "sinl@/2)d 0. (m — @)}
These matrices have a better structure (see Sec. V) and
the projectors are, respectively,

P6=£+A U%)’
P=1— '3,
=7 I g
P=( }—A—B/3 —(2v2/v3)3) i3,
$T\—(2v2/V3)B y—A+B/ |l

In these expressions, subspaces of D, are indicated on
the right, zero matrix elements are not written, and the first
column of Py deals with the | 3) vector.
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|
IV. PROJECTION OF A VECTOR |jm> ON AN

IRREDUCIBLE REPRESENTATION OF THE CUBIC
GROUP FOR INTEGER VALUES OF /

As seen in Table I, any vector of subspaces |6 + ) and
lf) — ) can be projected on two irreducible representations
of the cubic group and any vector of the two other subspaces
has projections on three irreducible representations. We no
longer have the favorable cases of a quaternary axis of quan-
tization, where the number of I, (resp. ['s) was equal to the
dimension of subspace |0 — ) (resp. |2 — )), thus leading to
a natural choice.

Considering an arbitrary vector |jm + ) of subspace
[jf) + ) as defined by (3), we write it as the sum of two unnor-
malized vectors:

m=0 (3): |jm +) =|I0), + |I50),. (27)
m>0

The action of R, = R (0, ¢, 7) gives
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2

mEO(3):RlUm +>= m

1
m}O 2(1 + 6m0) {M’EO(S)

m'>0

[(=1)"d (@) + (= V)"d (7 —@)] [ jm" +)

Y )[(—1)'"d££m(¢)+(-1)'"'d‘,:3m(vr—¢>>]lim'>]

m'£0(3!

=10y, 43|05 1) — 3 1050),, —3 |05 — 1), (28)

Equations (27) and (28) give representations i\r, 0) and the three components of I's. Indeed, {28) gives the nondiagonal

projection of |I's 1):

m=0 (3):|I51),, =

3
m>0 2 m'=1{3)

(= 1)"d D (@) + (= 1)"d L, (m— )] lim"). (29)

The components |I; 0) and |I's 0 are obtained by elimination of, respectively, |I's 0) and |I", 0) between (27) and (28):

m=0 (3T, 0) = % 3

[8m’m + 3
'S VI +8,0)(1 4 8,m0)

m>o m'>0
X[(= 17dfnlp) + (= 17d Dt — )] Jlim' 4, 30)
A 3 1
=0 (3):| 75 0),, =~ [5m,,,+
o T ) RN e e
X [(~ 1PdYnlg) +(— 17 Dot — )] flim' +). 31

If we had used R, = R (7, # — ¢, 0) instead of R, in
order to split the two terms of Eq. (27), we would of course
have obtained exactly the same expressions (29)—(31) which
mix reduced matrix elements for angles g and 7 — @.

Projections of vectors of subspaces [0 — ) and |j 1) are
obtained in a similar way, and we just list the results below,
expressed with the two following real, symmetric matrices:

3

c =

" 4T T 8,0) 1 + )
X{(= 1)"d2,.(p)+ (= 1"d . (m — @),
DU — 3
" 4T+ S + Bra)
X{(— 1)"d @) — (— 1)"d Dl — @)},

(32)

P=14+C 0 +)  (33a)

P,=i-D o =), (33b)

Py=3+(C—-D)2 1293 (33¢)
_(i—-3C—-Ds4 —v2iD\ |iD),

R G o I LI
_(i+C/4+3D vVIC i1y,

Orthogonalization and normalization procedures are
described in detail in Ref. 1.

V. CHANGE OF AXIS OF QUANTIZATION

Suppose we know one component of a given representa-
tion I'; by its decomposition on the base |jm), of standard
vectors associated to the quaternary axis of quantization 0z.
The question is what is its expression on the base |jm); of
standard vectors associated to the ternary axis of quantiza-

3379 J. Math. Phys., Vol. 25, No. 12, December 1984

r
tion 0Z, and vice versa? Moreover, for any representation of
dimension greater than 1, knowing only one component, say
in the quaternary axis, we want to derive all components in
the ternary axis; this is possible due to the existence of inter-
relations between components.

Since we need coefficients ,{ jm'|I;§) as functions of
coefficients ,{ jm|I",p),, we have to perform the rotation de-
fined by matrix (1) on two different spaces, namely the space
of base vectors and the space of components of the involved
representation. Euler angles of matrix (1) are

a=m, B=y=arccos(1/V3), y=3n/4 (34)

Base vectors transform according to the classical for-
mula

, 3\, ,
Y =3, R (0 2 33)
Components of representation I'; transform according
p
to
n oy 3 N
|F,-q>3=ZRg;)(— Tﬂ» -9, —V)IFiP)m (36)
P

where R " coincides with a R ? whenever I” ; can be identi-
fied witha &, (i.e, Iy, 'y, T, Ty forj=0, 1,1, 3).
Let us write the components of |I'; p), as

\FiBYa=3 a, 0 lip+4v)a (37)

where the sum over v is extended to positive and negative
integers.
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_ Combining (35)(37), we express |I', ; @), by its coeffi- In this formula, the dependency on Euler angles @ and y
cients on base vectors |jm')s; the coefficients for m'#g(3)  reduces to the sign (— 1)***. The symbol 4™ coincides

vanish and we can write with the reduced rotation matrix d '/ when I'; can be identi-

. v g . A
T4y, =3 (=147, 0d ) (—¥) fied with a & ; for the other representations, matrices 4
v have also real elements:

XdP, 3 p i aO)lig + 30)s. (38j
|1 0)5 =115 3, A (1213 2)a— 13 —2)4), (39a)
(|F3 1)3A ):L(“l 1) (|F39)4) (120).)
5 =D/ vz =1 = UAIR2), (1/V2)[22)4 + 12 = 2)), (39)
1[5 1)s W3=12 -1 (=v3=1) \/(IIs1), (—121))
0, J=—| -1 L - I3, (1/v2(2 204 — 2 = 2).) 39¢)
irs — 1), Vi+12 1 (=v3+n2/\In =D/ (2 = 1),
<|r7 1), ) 3 ( —sin(¥/2) — cos(¢/2)) (Iﬂ D4 ) (— W5/V6){53)s + (1/V6)5 —9)a),
0 =Dy " \—costwr2) sinwr2))\ |15 -3, — (SAB)l5 — P+ (1485 )a), (39
M
where the basic representations are contained inside paren-  These linear combinations appear naturally when we intro-
theses for the quaternary axis and given by formulas (5)and  duce in formula (40) base vectors of subspaces invariant un-
(8) for the ternary axis. der D, and D, [formulas (3) and (4) of this paper, and (2) and
If we know only one quaternary component |I; p),, (3) of paper I; they also appear when adding or subtracting

formula (38) cannot be used to yield all ternary components the two equations obtained by writing (40) for p and —p
|I"; §)4 since it involves a sum over p. However, if we rotate when applicable. For half-integer values of j, we similarly
only base vectors, i.e., if we combine formulas (35) and (37), introduce matrices «# and % whose elements are square
the unnormalized ternary components are the restriction of  roots of rational numbers:

the result to each subspace of D;; the same result, including
normalization information, is ob‘tamed without ha\_/mg to 29 = cos 12 49 @)+ (— 1
worry about o and 7, by multiplying Eq. (38) by the inverse 2

matrix (d u";) and summing over ¢:

X sin — v d(ﬁm(ﬂ' ¥),

A\ ) —1 ~
II‘,-p>4—;(d oo 115 8)3 a0 =cos%d‘,,f},,,(¢)—(— o

= ; #Z AP\ spps a0, 4 li g+ 3u)s. (40) «sin 2. ¢ du, (7 — ). (42)

The normalized component |I; §), is obtained by di- _
viding the associated partial sum in the third member of Eq. The ternary _COCfﬁClCntS are deduced frorp the quater-
(40) by the matrix element ( d (F.-))q; | We should note however nary ones, and vice versa, by the two following formulas,
that this procedure cannot separate |[;3) and [I'y —3), which are the consequence of Eq. (40):
which are obtained by the appropriate linear combination of
formula (40) written forp =3andp = —

As will be shown in Sec. VI matrix elements d,... () for T q); = z (= V4, oyl i sy 34+ 3,
integer values of j have the structure u + vv3, where «” and uv
v? are rational; this leads us to introduce the two matrices ¢ Ay v ,
and & whose elements are square roots of rational numbers: D) e =3 (=1 by 3l p s s 312 + 4V,

1 (43)
€ =

\/(1 + Sl + 8] . In the above expressions, ¢ and v are integers, p + 4v
XA{d2. @)+ (— 1" md L — ¢}, and g + 3u are labels of base vectors of subspaces of D, and
(41) D,, b, , andb, ,, arequaternary and ternary coefficients
U = 1 on these subspaces, and .# is a linear combination of the
= ﬁ+ 0] matrices ¢, &, €, & as indicated in Table III. Note that,
0 o in some cases when both components p and — p exist, two
XAd' 2, () — (= 1"+ ™d Q. — )} expressions for .# lead to the same result.
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TABLE III. Matrices .# of relation (43). When more than one expression is
listed, they are equivalent.

i 4 M

L)

€

g
-
—%

g
-9
EN3D
(V3V2)Z
€, —V3Z
—(VInv2g
Vig
% %1¥7,
€, —V3g
— VA2
%7
V3%, 2
— V3V
Vi€,
—V3IVhe
vieg
WVIV2)¥
V3%, -9
— (VINVDE
3%, -9
A NIRB
V32 %B
— V3V B
A, V3B
— (V3IV2)
-3, - B
-, - B
(V32
oL +1/V3 R
V6 &, V2%
V3
— VI + (2VIIVIB
—V3idg
V3@
V2,6 B
V3o - H
Vid — &

1 0

[ 8]
~

|

NI P R R N e Wm0 N0 R B Nl G0 Pt Rt MG Rt B R 1o Db B RO 100t bt () et bt D 0t et D et b D = D = O e = OO

Vi — (2VINVAD
V3o
—6ot, —vVI@
o + (\VINB

(S

VI. STRUCTURE OF COEFFICIENTS

Reduced rotation matrix elements are

dD..(B) =G+ mlj=m0)j+ mWj— m)

s (=)

Tt m =t j—m — )t —m+m')
Xcos(f /2RI m—m = 2sin( B/2)H M (44)
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In formulas (25) and (32), @ is such that

cos¥(@/2) =3, sin*(p/2) =1 (45)

Therefore cos(@/2)d ', (@) and sin(@p/2)d 2, (7 — @)
have a rational quotient and rational diagonal elements for
half-integer values of j, and their combinations 4 2, and
B2 have the same property.

For integer values of j, d 2. (p)and d” . (m — @) havea
rational quotient and rational diagonal elements, and their
combinations C!/,, and D!/} have the same property.

As a consequence, every matrix element of a projector
(26) or (33) is the product of the square root
V(i + m)lj— m)/(j+ m)i(j — m')! by a large integer, di-
vided by a power of 3 and maybe by 8 (some other factor v2
or V3 may also appear, see P,, P, P;). Diagonal elements are
rational, for the square root reduces to unity.

In formulas (41) and (42), angle ¥ is such that

zizi(l L)
cos > 5 +\/§ ,

(46)

A similar structure was already encountered for the ico-

sahedral harmonics,? with /5 instead of v3. We conclude
that elements of matrices .7, #, ¢, and & are square roots
of rational numbers.

VII. CONCLUSION

In paper I, we showed that coefficients of representa-
tions relative to a quaternary axis can be expressed in a
closed form involving only reduced matrix elements of angle
B = m/2. For the ternary axis we obtain a similar result with
angle B = @ = arccos }. The way to build an orthonormal set
in case of degeneracy is the same, and coefficients are square
roots of rational numbers. We have given the transformation
matrices for going from one system of coeflicients to the
other, and they equally have the same arithmetic structure.

All representations can be expressed in terms of I, I,
I;, only, as announced in paper 1. This fact is independent of
the axis of quantization, but some expressions are different,
details will be given in a forthcoming paper which will in-
clude tables of I'}, I,, I';, up to j = 25 in terms of prime
factors, for both axes of quantization.
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A prolongation is constructed, in the sense of Wahlquist and Estabrook, for the nonlinear
evolution equation determining Robinson-Trautman space-times. The Lie algebra so obtained is
found to be (naturally) seven-dimensional and nilpotent. Representations of the algebra are
considered. The simple relationship of such a prolongation to the conservation laws associated

with the Robinson-Trautman equation is discussed.

PACS numbers: 02.30. — £, 04.20.Jb

I. INTRODUCTION

The prolongation procedure developed by Wahlquist
and Estabrook’ has been used, with some success, to investi-
gate a number of physically interesting nonlinear evolution
equations. For example, linear scattering problems and
Bicklund transformations have been associated with nonlin-
ear evolution equations.??

Useful as the procedure has proven to be, it is as yet, not
completely systematic and there is no g priori way of know-
ing if a particular application of it will be successful. As well
as attempting to develop general techniques which will en-
able the method to be carried out as algorithmically as possi-
ble,* it is useful to produce examples in which various conse-
quences of the prolongation of different equations are
explored. It is with the latter aim that we consider in this
paper the prolongation of a nonlinear evolution equation
that occurs in the study of general relativity.

The successful prolongations of nonlinear evolution
equations have usually lead to incomplete Lie algebras of
vector fields, which are subject to certain constraints. The
constraints are often insufficient for one to be able to deduce
(say by repeated application of the Jacobi identities) that the
algebra is finite dimensional. Indeed, in important cases such
as the Korteweg~deVries (KdV) equation,’ the algebra is in-
finite dimensional. Somewhat ad Aoc procedures are then
used to “close off” this algebra, i.e., to find a nontrivial ho-
momorphism of the infinite Lie algebra into a finite-dimen-
sional Lie algebra. It is the representations of the finite-di-
mensional algebras which have been used in the association
of a Biacklund transformation or linear scattering problem
with nonlinear evolution equations. The finite algebras
usually dealt with in that context are (semi) simple, but solv-
able (and nilpotent) algebras also arise and have, to a certain
extent, been considered, particularly in relation to nonlocal
currents.>®

The equation considered here arises in the study of
vacuum solutions of Einstein’s gravitational field equations
which admit a one-parameter family of shear-free, diverging
null hypersurfaces.” When such a “Robinson-Trautman”
system is axially symmetric, Einstein’s equations reduce to a
single autonomous nonlinear evolution equation for one de-
pendent variable (z) which is a function of two independent
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variables (x, ). This equation (the Robinson-Trautman equa-
tion) admits an autonomous Wahlquist—Estabrook prolon-
gation in which the Lie algebra is in fact finite dimensional.
No “closing off” is needed. The resulting Lie algebra is sev-
en-dimensional and nilpotent. Two representations of this
algebra are considered, one nonlinear and the other linear.
The nonlinear representation is used to indicate that the exis-
tence of the seven-dimensional prolongation is merely a re-
flection of the fact that the Robinson-Trautman equation
admits a finite number of potentials and associated local con-
servation laws. The conservation laws are local in the sense
that the densities and currents do not depend explicitly on
the independent variables of the equation. They may, how-
ever, depend on the potentials. The linear representation is
used to associate a set of linear differential equations with the
Robinson-Trautman equation. The linear equations lead to
nonlocal conservation laws.

The finite-dimensional nilpotent prolongation obtained
here contains little information which cannot be obtained
directly from the evolution equation and its related poten-
tials. However, the results suggest that, even if this is gener-
ally true, such information may be most efficiently extracted
by the use of the prolongation technique.

Il. THE EQUATION AND ITS POTENTIALS

For Robinson-Trautman vacuum space-times which
are axially symmetric and Petrov type II, local coordinates
(t,r,x,¢ ) exist such that the metric can be written in the form®

ds* = (6K — 24r=' + rz7'z,)dt* 4+ 2 dr dr
— & Pz(dx* + dg ).

Here the level surfaces of constant ¢ are shear-free null hy-
persurfaces, » is an affine parameter along the null geodesics
generating these hypersurfaces, and x and ¢ are local coordi-
nates for the two-surfaces given by the intersection of the
level sets of ¢ and r. For constant ¢, K (z) is the Gaussian
curvature of the two-surface with metric iz{dx* + d¢ ).
The vacuum Einstein field equations reduce to a single
equation, the Robinson-Trautman equation, for z(z,x),

z,— K, =0, (2.1a)
K@:=z"[(z,) — 2z, ], {2.1b)
© 1984 American Institute of Physics 3382



where the subscripts denote partial derivatives with respect
to f and x. Here, all considerations are local and we do not
consider the global conditions which physically valid solu-
tions z must satisfy,’ but merely assume that all functions are
locally as well behaved as is needed. [The Schwarzschild
solution corresponds to z = a2 cosh™?(x), a, const.]

It is a straightforward matter to deduce, from Eq. (2.1),
a number of conservation laws of the type

d = (T, + X, )dt Ndx =0, (2.2a)
where the one-form {2 is given by
2:=Tdx —Xdt (2.2b)

Equation (2.2a) is called a “local” conservation law when T
and X are not explicitly functions of x and ¢, and “nonlocal”
when Tand X also depend on the independent variables  and
x.

First, since Eq. (2.1) is of this type, consider the one-
form a':

a:=zdx+K, dr. (2.3a)

Equation (2.1a) is equivalent to da' = 0, and so there exists
(locally) a potential p(z,x) such that

a' =dp. (2.3b)
p satisfies [from (2.3) and (2.1b)]
b — [K(px)]x = O’ (24)

where p, = z. Equation (2.4) is equivalent to da® = 0, where

a*=pdx +K(p,)dt, (2.5a)
and so there exists a second potential %, such that

a*=du. (2.5b)
Equating (2.5a) and (2.5b) implies that u satisfies

u, —K(u,)=0. (2.6)

Two further potentials, v and w, can be deduced from (2.1b)
combined with (2.4), since it follows from those two equa-
tions that

[(pPl, —2[ PK +2,/2], =0, (2.7)
and

(PPl — 3[(PV°K + 2pz,/z —22],, =0.

Equations (2.7) and (2.8) are equivalent to da® =0 and
da* = 0, with one-forms o and a* defined as

(2.8)

a’:=(p)dx + 2( pK + z, /z)dt, (2.9a)

a*: =(p)dx + 3[(pfK + 2pz,/z — 2z]dr.  (2.10a)
It follows that v and w exist such that

a® =dy, {2.9b)

a*=duw. (2.10b)

It is also straightforward to write down the evolution equa-
tions for v and w and they, along with (2.6), may be useful in
the search for solutions. They are not, however, needed here.
It will be seen in Sec. IV that the functions z, its derivatives,
and p, u, v, and w, play a determining role when the prolon-
gation of Eq. (2.1) is considered.

For later reference, note that one can always adjoin a
one-form
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a’=c¢,dx+c,dt, (2.11a)

where ¢, and ¢, are constants, so that da’ = 0 trivially. A
potential ¢ exists such that

o =dg. (2.11b)

lll. THE PROLONGATION

The Robinson-Trautman equation (2.1) can be repre-
sented by a differential ideal  of two-forms, defined on a
subset U of R®, with local coordinates x, ¢, z, z,, z,, and z;.
The ideal can be generated by the four two-forms

B'=(dz—z dx)\dt,
B*=(dz, —z,dx)\dt,
B? =ldz, — z; dx) A dt,
B*=dzNdx +dK,\dt,
where
K=2z7[z,) —zz)]
and
K= —z7*3(z)) — 42z,2, + (2)°z5].

(3.1)

Theidealis closed, and the generators vanish on a subset V of
R?, with coordinates x and ¢, when z is a solution of Eq. (2.1).
OnV

2z, =12,

K, =K,.
Following Wahlquist and Estabrook, a prolonged ideal

Tisdefined on U X R" with generators 3,82 82,8 * and the
n-vector valued one-form

0 =dy+Fdx + Gdr. (3.2)

R" has coordinatesy = { y*,4 = 1,...,n}, and F and G are -
vector valued functions on U X R”. However, since the dif-
ferential equation is autonomous, we follow the usual proce-
dure of assuming that F and G are not functions of x and .
The requirement that the “autonomous” prolonged ideal T
be closed under exterior differentiation leads to the following
expressions for F and G:

F=2zX, +X,,

2y =2,y 23=2

xxx ¥

(3.3)
G =In(z)X, + KX, — KX; — (z,/2)X, + zX5 + 1 X,,

where X, (i =0,1,...,6) are vector fields on R" alone. X, X,,
and X, arise as integration “constants” and X, X;, X,, and
X are defined by the vector field Lie brackets

X, Xo] =X, [X,X3]=:—X,,
(3.4a)
XX ]=:—X, [X,X]=:—-X,.

The commutators which arise directly from the requirement
that I be closed are

[X09X1] =0, [XO,Xz] =0,
[X2.X5]1=0, [X,X,]=0, (3.4b)
(X, Xs1=0, [X;Xs]= —}[X,,Xc]

It follows immediately from an application of the Jacobi
identities to X,X,,X;, and Eq. (3.4) that
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X,=0. (3.5)
If one further vector field X, is defined by
X = — X, X1, {3.6)

it can be seen directly that {X,,..,X,} generates a seven-
dimensional nilpotent Lie algebra with commutator table
([X,, X, ] isin row X, column X,),

X (X, | X | X, | X | Xo | X,
X, | 0| X, | -X,| -X,| 0 | —3X,] 0
X, 0| o 0 | X,| o 0
X, 0 X, | O 0 0
X, 0 | o 0 0
X, 0 0 0
X, 0 0
X, 0

(3.7)

The Lie algebra will be denoted by .4, and its center is
X,. Since no “closing off”’ or other ad hoc technique has been
used in these calculations, the autonomous prolongation has
now been completely determined. Equations (3.2) and (3.3)
can be rewritten in the form

0=dy+0'X, (a=1,.7), (3.8)
where

o'=zdx +K,dt, »*=dx,

o= —Kdt, o= —(z2,/2)dt, (3.9)

o’ =zdt, w®=1dt,

«’ =0.

The one-forms w° define® an .#",-valued connection I~ with
curvature which vanishes on ¥ when z is a solution of the
Robinson-Trautman equation. In other words, the equation
of parallel transport of y, along curves on ¥,

dy + »°X, =0 (3.10)

is integrable if, and only if, I" is flat.

The explanation for why X, does not appear in the pro-
longation (i.e., »’ = 0)is the following: Equation (3.8) consti-
tutes a prolongation of I if, and only if, 6 “ is contained in 1.
Since X, is the center of /4", and C ., 0" A w® = 0, it follows
that

do* = ([do® — 1C8 0P A"\ X 4 + do” X4 (mod 67),

where a, 3, ¥ = 1,...,6 and the C:, are given implicitly in
(3.7). Hence, 1 is closed when o',...,w° are given by (3.9) if,
and only if dw’ is contained in I Assuming
o’ = fdx + g dt, closure implies

@’ = bw' + bw? + byw®, (3.11)

for real constants b,, b,, and b;. However, this is not a gener-
alization of (3.9), since the generators of .#”, admit an auto-
morphism

X,—X, -5X, X —X,-bX,
X;—X,; XX,
X.—X;, X—Xs—06:X,, X —X.
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Consider Eq. (3.8) with »’ given by (3.11). Under the auto-
morphism this is equivalent to (3.8) with @’ = 0. Therefore,
it is sufficient to consider only the quotient of 4", by {X,} in
the following section.

IV. REPRESENTATIONS OF .+ AND CONSERVATION
LAWS

Whenever one finds a set of potentials for a given evolu-
tion equation, it is possible to immediately write down a
(Wahlquist-Estabrook) prolongation without going through
the steps of Sec. III. This fact is illustrated by relating the
results of the previous two sections. When z is a solution of
Eqg. (2.1), the potentials introduced in Sec. 11 yield the follow-
ing equations:

O0=dp—zdx—K_dt,

0=du—pdx—Kdt,

0=dv — (pfdx —2(pK + z,./z)dt, (4.1)

0=dw—(p)dx — 3[(p)’K + 2pz,/z — 2z]dkt,

0=dg —c,dx —c,dt.

These can be interpreted as equations of paralle! transport
for a five-dimensional vector y, where

(L% 0705 Y = [ pupwgl.

By comparing Egs. (4.1) with Egs. (3.10), and using the nota-
tion of Eqs. (3.8) and (3.9), one can immediately write down a
prolongation with n = 5

91 — dyl - wl’
02 =dy* — y'o?® + &,
03 =dy® — (y)Ve? + 'e® + 20°, (4.2)

94 — dy4 _ (y1)3w2 + 3(_}1])2(03 + 6}’10)4 + 60)5,

0° =dy’ — c,w* — 3c,0°.
For z a solution of the Robinson—-Trautman equation, Eqgs.
(4.2) can be pulled back to Egs. (4.1) on V. By comparing Eq.

(4.2) with the general form of (3.8), one can identify the six
vector fields (recall 87 = d y* + 0°X )

X, = -4,

X, = —y'9, — (¥')3; — (¥'f8, — ¢,9s,

X, =09, + '35+ 3(y')ds (4.3)
X, =23, + 6p'd,,

X5 = 6d,,

Xe = — 3cy0s,

where d,: = 3 /3y*, A = 1,...,5. These vector fields realize
the six-dimensional nilpotent Lie algebra.#", corresponding
to the quotient of .47, by its center [i.e, obtained from the
commutator table (3.7) by formally setting X, = 0].

On the other hand, starting from the complete autono-
mous prolongation obtained in Sec. III, and representing the
Lie algebra generators X,..,X, by the vector fields on R’
given by Eq. (4.3) and the center X, by the zero vector field,
one obtains Eq. (4.1) again.

By way of contrast, consider an evolution equation with
an infinite number of potentials (or Wahlquist-Estabrook
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pseudopotentials) and conservation laws, such as the KdV
equation. The prolongation structure of the KdV equation
yields an infinite-dimensional Lie algebra. By imposing an
ad hoc linear relationship upon certain generators, homo-
morphisms to finite-dimensional Lie algebras can be ob-
tained. Here, the direct relationship between the potentials
of Sec. IT and the generators of 4", suggests that the autono-
mous prolongation has little more to offer directly than do
the potentials themselves.

Many different realizations of .4’ or .47, can be ob-
tained, of course. Higher-dimensional realizations will result
in more potentials. The significance of these is determined
from Egs. (3.10). For example, a faithful six-dimensional re-
alization of 4 is given by X, X, X,, X,, of Eq. (4.3), with
X, and X, replaced by

X,—X, + (¢ +¥°)9s, X%,

For this example, it is easily seen from Egs. (3.10) that, on ¥,

y° and y® are simple functions of x and ¢, respectively. In‘

] [0 0o 0 0 0 0 0
3 0 0 0 0 0 0 O
3 -1z 0 0 0O O 0
9 #}l=l 0o 0 —z 0 0 0 0
9% | s 0 0 0 —z 0 0 O
¥ 0O 0 0 0 0 0 O
] Lo o0 o 0 1 —3z 0]
1 [0 0 0 0 0
e 0 0 0 0 0
7 0 K, 0 0 0
3
9lyl=| —k o0 -k, 0 0
I\ ) —z,/z 0 0 -k, 0
»° 0 0 0 0 0
4 I -z z/z —-K 0 -

In this particular case, the effect of choosing a different rep-
resentation of the Lie algebra in the prolongation can be
illustrated by using these equations in a more direct manner
than is usually possible. When z is a solution of the Robin-
son-Trautman equation, it follows in a simple way from Eq.
(4.5) that

yl =a,,

y2=azr

y= a,p —ax,

vt =a\(xp —u)—la,( p)’,

¥’ =1a,[2up — x(pf* — v] + {as( p)’,
Y =a,,

¥ =1a,[2t + (u)* — xv] + a,w — 3a, p,

(4.6)
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general, the addition of identically conserved quantities to
Egs. (3.10) gives no further information about these equa-
tions.

Here, we confine ourselves to the consideration of a
linear representation of /4", in order to associate, in the usual
way, a linear system with the Robinson-Trautman equation.

Such a representation of .47, is given by the following
vector fields on R”:

X, = —y%0; + 1’0, +y'ds + 3y°3,,
X,=y'd,—y°d,

X;= —y'9,— )9,

X,= —y'0s + 9, (4.4)
X =%,

Xe= —3y'd;,

X, =0.

From Egs. (3.9) and (3.10), (4.4) yields the linear differential
equations'®

F'yl'
y2
y3
v s
yS
y6
[y’ ]
(4.5)
0 07 "'
0 0 »?
0 0 »?
0 ol]y*
0 ol]y°
0 o|[»*
3k, ofLyd

where a,, a,, and a; are constants and p, u, v, and w are the
potentials considered previously. Because the functions
»',....y7 can be expressed in terms of the potentials in this
way, it is possible to rewrite the integrability conditions for
the linear system (4.5) explicitly as conservation laws for the
Robinson-Trautman and potential equations of Sec. IL
These conservation laws are obtained by inserting the func-
tions {y*} from Eq. (4.6) into the integrability conditions

(2" =), = (VK ), (4.7a)
(%), = (¥y'K + K, ),, (4.7b)
(2%), = (¥'z./2 + y'K, ), (4.7¢)

(¥’ =3, =(y' —z* +y’2,/z — Ky* — H°K,),.
(4.7d)

Contained in these equations are local and nonlocal conser-
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vation laws including the simple, but nonlocal, law for Eq.
(2.1) given by [choose @, = — 1,a, =01in (4.7b)]
(xz)t = ( - K + 'XKx)x'
Such results are not contained in the earlier considerations.
Conclusions regarding the physical significance of the
conservation laws obtained here, and exact solutions ob-
tained from the potential equations, will appear elsewhere.
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A one-parameter family of potentials in one dimension is constructed with the energy spectrum
coinciding with that of the harmonic oscillator. This is a new derivation of a class of potentials
previously obtained by Abraham and Moses with the help of the Gelfand-Levitan formalism.

PACS numbers: 02.30.Em, 03.65. — w

I. INTRODUCTION

Contrasted with general relativity, where new solutions
are found every now and then, the class of exactly soluble
problems of quantum mechanics (QM} has not greatly ex-
panded. The two most commonly used exact methods to
determine the spectra in QM are the method of the orthogo-
nal polynomials and the algebraic method of “factoriza-
tion.” The potentials for which exact solutions exist form a
rather narrow family, including the elastic and Coulomb po-
tentials (modified by the 1/r terms), the Morse potential,
the square potential wells, and a few others, and the common
opinion is that this is everything exactly soluble in Schro-
dinger’s quantum mechanics. Hence, it might be of interest
to notice that in some occasions the “factorization” method
seems not yet completely explored. In particular, it allows
the construction of a class of potentials in one dimension,
which have the oscillator spectrum, but which are different
from the potential of the harmonic oscillator. This class has
been previously derived using the Gelfand-Levitan formal-
ism.

il. CLASSICAL FACTORIZATION METHOD

The factorization method in its most classical form was
first used to determine the spectrum of the Hamiltonian of
the harmonic oscillator in one dimension:

1 d? 1,

H 7 + 2x. (2.1)

The method consisted of introducing the operators of
“creation” and “annihilation”

a= L (i + x) -1, ~xzﬂiex’/2, (2.2)
\/i dx \/i dx
a*_L(_i x)=__1_ex2/2ie_x2/2’
\/i dx \/i dx
(2.3)

with the properties

ata=H —} .

aa* = H +} =laa*] =1 (2.4)
Hence,

Ha* =a*H + 1), (2.5)

Ha=alH-1) (2.6)

% On leave of absence from Department of Physics, Warsaw University,
Warsaw, Poland.
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These relations allow the construction of the eigenvec-
tors and eigenvalues of H. If ¥ is an eigenvector of H
(Hy = Ay) the functions a*y and ay [provided that they are
nonzero and belong to L *(R )] are new eigenvectors corre-
sponding to the eigenvalues A + 1 and 4 — 1, respectively:

Ha*y)=a*H + 1) = (A + l)a*y, 2.7)
Hay)=aH— 1)y =4 — l)ay. (2.8)
Since the operator H is positively definite, one immedi-

ately finds the lowest energy eigenstate 1, as the one for
which
d

ato = 0= —— ey = 0=3dlx) = Coe =7,

and one checks that the corresponding eigenvalue is Ay = .
Using now the operator a*, one subsequently constructs the
ladder of other eigenvectors ¢, corresponding to the next
eigenvalues A, =n + §:

(2.9)

by = Cola iy = €, = 1|2 g e
dx"

= C,H, (x)e *", (2.10)

where H, (x) are the Hermite polynomials given by the Ro-
driguez formula
n, x* d " — x?
H,(x)=(—1)% o e~ ™.
The nonexistence of any other spectrum points and eigen-
states follows from the completeness of the Hermite polyno-
mials. The above method was first employed by Dirac.’ Its
extension for the hydrogen atom was found by Infeld and
Hull.? A generalized presentation is due to Plebaiiski.> The
group theoretical meaning is owed to Moshinsky,* Wolf,’
and other authors. Yet, there is still one aspect of the method
relatively unexplored. It can be used not only to find the
interdependence between different spectral subspaces of the
same operator but also to transform one Hamiltonian into
another.

(2.11)

lli. MODIFIED HAMILTONIAN

Consider once more the factorized expression

H 41 =aa*. (3.1)

Are the operators ¢ and a* here unique? Define the new
operators

b= —(L +pw)

2
% (32)
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br— L(_ 4 +5(x)), (3.3)
V2 dx
and demand that H + | be written alternatively as
H+l=bb*. (3.4)
This leads to
1 d? 1

o141 L_L(__z : z)
+2x+2 5 dx2+ﬂ+ﬁ,
(3.5)

and so, the condition for 3 is the Ricatti equation
B'+B*=1+x" (3.6)
The occurrence of the Ricatti equation in the factoriza-
tion problems is a typical phenomenon.>* In general, the
explicit solution of this type of equation is not known. This is
not the case in (3.6), where one has one particular solution

B = x. Hence, the general solution can be obtained putting
B =x + ¢ (x). This yields

O +2x+ > =04"/$>+ 2x(1/4)+ 1=0. (3.7)
Introducing now a new function y = 1/¢, one ends up
with a first-order linear inhomogeneous equation

—y 4+ 2xp+1=0, (3.8)
whose general solution is
y= (y + f e ™" dx’)e"l, yeR.
0
Hence,
e~ e~
)= ——————=BK)=x+ ——F=—.
Y+ fse=* dx' Y+ foge * dx’

(3.9)

The introduction of the operators b, b * might seem to offer
little new, as we have still b6 * = aa* = H + 1. However, the
commutator of b and b * is not a number:

[6,b*1=8'(x)=1+ ¢ '(x). (3.10)
Hence, the inverted product b *b is not H + const, but it
defines a certain new Hamiltonian

b*b=bb*+ [b*b)=H+}—1—¢ =H' —}

(3.11)
where
H—H—¢'x=— L9 Ly, (3.12)
2 dx?
with
v _ 4 [__e_____] (3.13)
2 dx |y + e dx'

If |y| > ;\/;, the above potential has no singularity and be-
haves like x?/2 for x— + «; and so, one obtains here a one-
parameter family of self-adjoint Hamiltonians in L *(R ). As
one can immediately see, their spectra are identical to that of
the harmonic oscillator, though their eigenvectors are differ-
ent. Indeed, (3.4) and (3.11) imply
Hb*=(b*b+})b*=0b*bb*+})=>b*H+ 1)

(3.14)
Hence, for ¥, (n =0, 1,...) being the eigenvectors of H, the
functions
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G =0y Gr=0*y., ¢, =0%Y,_,,... (3.15)
are the eigenvectors of H ‘ corresponding to the same eigen-
values A, =n + I
H'¢g,=H'b*), ,=b*H+1)¢,_, =b*n+i,_,

=n+Ys, m=12,..) (3.16)
The functions ¢, are square integrable because of the asymp-
totic behavior of ¢ (x) for x— + «. They are obviously or-
thogonal, as (¢j’¢k) = (b *'/]jw 1 b *'pk— 1) = ('/’jA 1
bo*h ) =W, HAYy) =k 1, ¥e_1)=0,
for k #j. However, they do not yet span the whole of L (R ).
The missing element is the vector ¢, orthogonal to all of ¢,

(B0s8) = (osb *¥, _ ) = 0=(bdp,th,_ ;) =0
(forn=1,2,..)=bd, =0, (3.17)
and so, the “missing vector” is found from the first-order
differential equation

by = % [+ pw]s=0

=y =coe "/ zexp<J:¢ (x’)dx).

By the very definition (3.18), ¢, is another eigenvector of H '
corresponding to the eigenvalue A, = §:

H'¢y=(b*b + Y)po = 30 (3.19)
As the system of vectors @y,é,... is complete in L %(R ), the
operator (3.12) is a new Hamiltonian, whose spectrum is that
of the harmonic oscillator, although the potential is not.
Since our initial Hamiltonian is parity invariant, the final
conclusion should remain valid when x— — x. Indeed,
though each one of the potentials (3.13) is not parity invar-
iant, the whole class is: V' ( —x,7) = V{x, — %) (|7| > W7).
The reader can verify that what we have obtained here is the
same class of potentials that Abraham and Moses obtained
by using the Gelfand-Levitan formalism (Ref. 6, Sec. I,
starting on the top of p. 1336; see also papers by Nieto and
Gutschick” and Nieto®).

Remark: Differently than for the oscillator, the eigen-
vectors ¢, admit no first-order differential “rising opera-
tor.” The ¢, s are constructed not by a rising operation, but
due to their relation to the ¥, ’s, which can be schematically
represented as in Fig. 1. This means, however, that for the
#,’s there is a differential “rising operator,” but it is of the
third order: 4 * = b *a*b. As far as we know, the use of the
higher-order rising and lowering operators in spectral prob-
lems has not yet been explored.

(3.18)

I_
x

) * x

vy A'=b o"b
¢2i \D\p A= b*ab

| b* : H A= (H +1)

7y Ly \

! B H'A=A(H-1)
¢| f b’ le

s ‘**
b, o

FIG. 1. The relation between the ¢,’s and the ¢,’s.
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Earlier work of the author on the spatially periodic solutions of the Korteweg—de Vries equation is
here extended via an in-depth treatment of a special case. The double cnoidal wave is the simplest
generalization of the ordinary cnoidal wave discovered by Korteweg and de Vries in 1895. In the
limit of small amplitude, the double cnoidal wave is the sum of two noninteracting linear sine
waves. In the oppositie limit of large amplitude, it is the sum of solitary waves of two different
heights repeated periodically over all space. Although special, the double cnoidal wave is
important because it is but the particular case N = 2 of a broad family of solutions known
variously as “/V-polycnoidal waves,” “finite gap,” “finite zone” solutions, “waves on a circle,” or
“N-phase wave trains.” It has been shown by others that the set of N-polycnoidal waves gives the
general initial value solution to the Korteweg—de Vries equation. This present work is the core of a
three-part treatment of the double cnoidal wave. This part, the overview, presents graphic
examples in all the important parameter regimes, explains how collision phase shifts alter the
average speed of the two wave phases from the “free” velocities of the two solitary waves,
describes the different branches or modes of the double cnoidal wave (it is possible to have many
solitary waves on each spatial period provided they are of only two distinct sizes), and contrasts
the results of this work with the very limited numerical calculations of previous authors. The
second part describes how the problem of numerically calculating the double cnoidal wave can be
reduced down to solving four algebraic equations by perturbation theory. The third part explains

how the so-called “modular transformation” of the Riemann theta functions is important in

interpreting N-polycnoidal waves.

PACS numbers: 02.30.Jr, 02.60.Lj

I. INTRODUCTION

The “Hill’s spectrum method,” developed in the mid-
1970’s by Lax, Novikov, McKean, and others, has been a
powerful theoretical tool for understanding the spatially pe-
riodic solutions of the Korteweg—de Vries and other soliton
equations. In particular, it showed that there existed solu-
tions which generalize the simple cnoidal waves found by
Korteweg and de Vries themselves in 1895. These general-
izations were dubbed “polycnoidal waves” in Ref. 1 but they
are known alternatively as ““finite band” or “finite gap” solu-
tions in the Russian literature and sometimes as “/N-phase
wave trains” in the American journals. The N-polycnoidal
wave is a function of N “phase” variables of the form

Si=kilx—ct)+ ¢, (1.1)
where the k; are wavenumbers, the ¢; are phase speeds, and
the ¢, are constant phase factors. The most compact expres-
sion for u(x,t) is in terms of a N-dimensional Riemann theta
function whose arguments are the N *“‘phase” variables de-
fined in (1.1). Although the polycnoidal waves, like the ordi-
nary cnoidal wave which is the special case N = 1, are thus
special solutions, it has been shown that the class of poly-
cnoidal waves is dense on the set of solutions of the
Korteweg—de Vries (KdV) equation which are spatially peri-
odic. To put it another way, the solution to the KdV equa-
tion for an arbitrary initial condition can be approximated
for an arbitrary finite time interval to an arbitrary degree of
accuracy by an N-polycnoidal wave of appropriate param-
eters and sufficiently large V. Thus, to understand these spe-
cial solutions is to understand the general solution, too, at
least for finite time.
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Unfortunately, like its counterpart, the inverse scatter-
ing method for a spatially unbounded domain, the Hill’s
spectrum method is very complicated and a poor tool for
actual numerical calculations. To quote Ferguson et al.,”
“the exact formulas seem to be of little practical use.” An
alternative approach was discovered by Hirota®* and subse-
quently generalized to the spatially periodic problem inde-
pendently by Nakamura® and Boyd.! The reason for the al-
ternative’s effectiveness is that the theta functions satisfy not
the KdV equation itself, but rather Hirota’s transformed
version, which will be called the “Hirota~-Korteweg-de
Vries” or "HKdV” equation; the solution of the KdV equa-
tion is obtained by taking the second derivative with respect
to x of the logarithm of the theta function. Because the theta
function depends on only a finite number of parameters, it is
possible to reduce the problem down to that of solving a
finite set of algebraic equations to determine these theta
function parameters.

The aim of this paper, which is a sequel to Ref. 1, is to
exploit this Hirota-theta function approach to deepen our
understanding of the spatially periodic solutions of the
Korteweg—de Vries equation, paying particular attention to
N =2, the double cnoidal wave. This article and its two
companion papers,®’ are a single connected work. The other
two papers discuss a perturbative (and numerical) solution of
the implicit dispersion relation for the theta function param-
eters and the role of the “special” modular transformation of
the theta functions in physically interpreting the polycnoidal
wave solutions. This paper will strive to provide a general
overview of the physics and mathematics of polycnoidal
waves, leaving the technical details to the other two articles
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wherever possible.

Before giving an outline of this work, it is useful to com-
pare and contrast its aims with those of three other schools of
polycnoidal wave studies. A. Nakamura and his collabora-
tors R. Hirota, M. Ito, and Y. Matsuno®%-'® have developed
the direct theta function method by showing, via a mixture
of clever theorems and occasional numerical calculations,
that it can be used in principle to reduce a large number of
different soliton-admitting partial differential equations to a
finite set of algebraic equations for the theta function param-
eters. Equations whose Hirota-transformed equivalent is a
set of coupled bilinear equations or a complex equation are
discussed as well as the simpler case of those which, like the
Korteweg—de Vries equation, transform into a single bilinear
equation with real coefficients. They emphasize that a num-
ber of as yet unresolved technical difficulties exist for these
other classes of equations, which is why this present article is
focused specifically on the KdV equation. The limitations of
their work are a lack of explicit calculations (except for ordi-
nary cnoidal waves and some numerical computations de-
scribed in Sec. VII), omission of perturbation theory such as
is given in Ref. 6, and restriction to theta Fourier series only.
The alternative Gaussian series for the theta function, intro-
duced in Ref. 1, is a better way to explore the near-solitary
wave regime.

Forest, McLaughlin, Flaschka, and Ferguson®'' have,
like the author, attempted to explore polycnoidal waves in
the spirit of applied mathematics rather than pure math-
ematics by taking a ‘‘concrete viewpoint,” to borrow a
phrase from the title of Ferguson et al.> Though the philoso-
phy thus is similar, the line of attack is very different: this
work and Refs. 1, 6, and 7 scrupulously avoid any explicit
use of the Hill’s spectrum method while Ferguson ef al.
have “Spectral theory” as the first words of their title. Their
whole approach is oriented toward understanding polycnoi-
dal waves via calculation of the spectrum of Hill’s equation
and they avoid all mention of Hirota’s transformed bilinear
equations, perturbation theory, the special modular trans-
formation, and most of the other topics we will discuss.
Thus, their work is complementary to what will be presented
here.

The Polish school of Zagrodzifiski and Jaworski'? has
written an interesting series of papers on the sine-Gordon
equation. Their approach is inverse to that used here in that
they completey specify the theta matrix and then solve for
the wavenumbers k;. This simplifies much of the analysis at
the expense of obtaining generally nonintegral k; so that
their solutions are “almost periodic” rather than periodic in
space.

Il. AN OVERVIEW OF THE DOUBLE CNOIDAL WAVE

The Hill’s spectrum method has shown that the N-po-
lycnoidal wave is most easily expressed in terms of an N-
dimensional Riemann theta function via

d 2
ulx,t)=12—1n[8 (x,t)], 2.1
(x,2) i [6(x,1)] (2.1)

where 6 (x,t) is the N-dimensional Riemann theta function
and where u(x,t) is the actual solution of the Korteweg—de
Vries equation
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u, +uu, + ., =0. (2.2)

For the special case N = 2, which will be henceforth called
the “double cnoidal wave,” the theta function is defined by

0= Z Z exp( — {Tyyn,® + 2T pmyn, + Tppny?y)

n=—c M= —

Xexp[2min X + n,Y)], (2.3)

where the T;; are the elements of a 2X2 positive definite
symmetric matrix known as the “theta matrix™ and where X

and Y are the “phase variables” defined, as in (1.1), by

X=kix—cit)+ ¢, (2.4)

Y =kyx —cot) + ¢, (2.5)

Mathematicians normally define the theta function in terms
of an imaginary theta matrix as explained in Appendix A,
but the real-valued T, employed in (2.3) are more convenient
for calculations. The independent parameters are the wave-
numbers &, and k,, and the diagonal theta matrix elements
T, and T),,. The dependent parameters are the phase speeds
¢, and c,, plus the diagonal theta matrix element T',,. [There
is a fourth dependent parameter, the constant of integration
A in the “Hirota—Korteweg—de Vries equation” described in
Ref. 6, but this is only a calculational tool and does not ap-
pear in the final answer (2.1).]

The wavenumbers &, and k, can be arbitrary; Novi-
kov'? has emphasized from his earliest papers that if the
wavenumbers are incommensurable, i.e., if k,/k, is an irra-
tional number, then the double cnoidal will be “almost peri-
odic” in space rather than strictly periodic, but this is math-
ematically legitimate. Although some applications of
“spatial almost periodicity” can be envisaged,'* it is suffi-
cient for most physical problems to take k, = I and &, = 2.
The reasons are that (i) in most Fourier series, the second
harmonic {(k = 2) is the largest component after the funda-
mental (k= 1), and (ii) one can change the spatial period
from unity [as in (2.3) with k, = 1] to an arbitrary period
through a trivial rescaling of the coordinates. The spatial
period is equal to one in all the figures and cases described in
the rest of this paper.

The diagonal theta matrix elements are thus the more
important parameters because they specify the amplitude of
the two waves that make up the double cnoidal wave. Figure
1 indicates the different wave regimes of the T,; — T, plane.
When T, and T,, are both large, the double cnoidal wave is
approximately equal to the sum of two linear, noninteracting
sine waves of different wavenumbers and phase speeds, i.e.,

uix,t)= — 48w’ [k e~ " cos27X)

+kle~ T=cos(2rY)]. (2.6)

When both T, and T, are small, the double cnoidal
wave is approximately given by the usual Korteweg—de Vries
double solitary wave with one tall soliton and one short soli-
ton on each unit interval in x. The Fourier series (2.3) con-
verges very slowly for small 7', and T,. The central theme
of the author’s previous paper’ is that one should substitute
instead the series
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FIG. 1. Schematic diagram showing the four main regimes of the double
cnoidal wave in Ty, — T, plane, where T, and T,, are the diagonal theta
matrix elements, which are always positive.
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where the sums are over the half-integers, +1, +3, +3, ...,
and where the R are proportional to the elements of the
inverse of theta matrix formed by the T;;. For obvious rea-
sons, (2.7) will be referred to as the “Gaussian” series of the
theta function since each term is a Gaussian function of X
and Y; this series is the Poisson sum of the Fourier series. As
explained in Appendix B of Ref. 6, the usual double solitary
wave can be obtained from (2.7) by truncating it to four terms
and taking the second logarithmic derivative as in (2.1), but
the result is too messy to repeat here.

The strength of using two alternative series represen-
taions, (2.3) and (2.7), is that the Fourier series converges
rapidly in the double sine wave regime where (2.7) converges
slowly, while the Gaussian series converges rapidly in the
double soliton regime where the Fourier series is almost use-
less. Consequently, in this paper and its two companions, we
shall move from Fourier series to Gaussian series and back
again with great freedom. As explained in Ref. 6, the me-
chanics of calculating the unknown phase speeds and diag-
onal theta matrix element (either T, or R ,) are such that the
Fourier-based computation is merely a special case of that
for the Gaussian series.

Unfortunately, neither series is rapidly convergent
along the T, and T, axes where one diagonal theta matrix
element is large in comparison to the other, but this is not of
vital importance because these near-axis regimes represent a
single solitary wave perturbed by a very small amplitude sine
wave. As such, these regimes are much less interesting than
those in which the two waves are of equal amplitude since
theories for the single soliton subject to an arbitrary pertur-
bation have been developed by R. Grimshaw'® and others he
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references. In practice, there is actually a high degree of
overlap between the Fourier and Gaussian series both with
each other and with the perturbed one-soliton regimes, so
the need for special methods for these near-axis double cnoi-
dal waves is usually academic.

The double solitary wave regime is the most interesting
case of all. In Sec. 1V, the geometry of the X-Y plane is de-
duced from the Gaussian series. To some extent, this will
merely repeat the construction given in Ref. 1 for the single
cnoidal wave, but it will also bring out several features such
as phase shifts and the special modular transformation
which are unique to polycnoidal waves with N>»2, and have
no counterpart for the ordinary N = 1 cnoidal wave. First,
however, some sample graphs are presented to give the read-
er a feeling for each of the four regimes of the double cnoidal
wave.

lil. SAMPLE DOUBLE CNOIDAL WAVES

Figures 2-5illustrate u(x,t ) for each of the wave regimes
indicated schematically in Fig. 1. The graphs were computed
in a frame of reference moving at the phase velocity ¢, so that
the tallest peak is approximately stationary; in this frame of
reference, the double cnoidal wave is simply periodic in time,
so it suffices to show half of one temporal period. Strictly
speaking, the double cnoidal wave solution has a mean value
of 0, i.e., the integral of u(x,? ) over a period is 0, but for visual
clarity, a constant'® has been added to the graphs.

The first case is that of a classic double solitary wave:
The tall soliton overtakes the short soliton and only a single
peak is visible at the time of maximum interaction. In time,
however, the two separate and emerge unchanged by their
interaction except for a shift of phase. In other words, the tall
peak is briefly accelerated and the short peak briefly deacce-
lerated by their encounter so that the tall soliton is farther to
the right than it would have been in the absence of the colli-
sion. In a spatially unbounded domain, where there are just
the two solitons on the whole interval x€[ — «, ], this col-
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FIG. 2. A Korteweg—de Vries double cnoidal wave in the double soliton
regime. The mode in this and the next three figures is [1,2] f or equivalent-
1y, {1,1} %, in the notation defined in Sec. V. The angle variable X, defined by
(2.4) was set equal to x, the spatial coordinate, for all curves so that we are
looking at the wave in a frame of reference moving with the phase speed, ¢,.
The double cnoidal wave is simply periodic in time in this reference frame
with a period P = 1/c,. Solid curve (¢ = 0), dashed curve (t = P /4), and dot-
ted curve (t=P/2) show one half of a time period. T), =0.397,
T,, = 0.359, and T, = 0.892 (with k&, = 1 and k, = 2, here and in the next
three figures).
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FIG. 3. Same as Fig. 2 except that the polycnoidal wave is in that intermedi-
ate parameter range where it can be regarded (and accurately approximat-
ed) as either a pair of linear sine waves or a pair of solitary waves. Solid curve
(t = 0), dashed curve (r = P /4), and dotted curve (¢ = P /2), where Pis the
time period.

lision is a once-in-a-lifetime event, and therefore does not
affect the average speed of the solitons. On the periodic do-
main, the collision is repeated endlessly, so the repeated
phase shifting does alter the average phase speed of the soli-
tons. The implications of this are discussed in the next sec-
tion and more particularly in Sec. V.

Figure 3 shows the double cnoidal wave when both
peaks are much smaller and wider. The parameter values are
such that the polycnoidal wave lies in that intermediate re-
gime where it can be equally well considered to be a solitary
wave or a pair of sine waves: both lowest-order approxima-
tions agree with the exact solution to within a few percent of
accuracy. The qualitative behavior is very similar to that of
the extreme double soliton case shown in Fig. 2, and can
likewise be interpreted as colliding solitary waves. The alter-
native sine wave interpretation is equally straightforward.!’
At? = 0(solid curve, Fig. 3), a trough of the second harmon-
icis 180 degrees out of phase with the wavenumber one com-
ponent at X = 0. The result is a dimple at X = 0, where the
peak of the fundamental is partially cancelled by a trough of
the second harmonic, two peaks on either side of the origin
near nodes of the second harmonic, and very deep troughs at
X = + }, where both the fundamental and harmonic have
negative maxima. When the second harmonic has moved a
quarter unit in X (dotted curve), there is a single tall, narrow
peak at X = O where the fundamental and second harmonic
are in phase, and smaller secondary peaksat X = + 1 where
the narrow crests of the second harmonic rise from the flat-
ter troughs of the fundamental.

Figure 4 illustrates the rather boring case of a single
soliton modified by a small superharmonic (wavenumber
two) perturbation (7T,,>7,,, where k,=2k,). Lax has
shown'® that when the two solitons are sufficiently unequal
in size, the tall soliton becomes shorter and broader during
the collision (i.e., while out of phase with the crest of the
perturbation) but the dimple at or near X = 0 (so that Figs. 2
and 3 always have two local maxima) does not occur so that
there is only a single local maximum for part of each period
in time.

Figure 5 shows the other perturbed soliton regime
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FIG. 4. Same as Figs. 2 and 3 except that the polycnoidal wave is actually a
weakly perturbed ordinary cnoidal wave. Solid curve (¢ = 0), dashed curve
(t = P /4), and dotted curve (t = P/2), where T = 1/c, is the time period.
T,, = 1.00, T, = 0.759, and T, = 3.00.

(T,;>T5,). This is a cnoidal wave of half-unit spatial period
weakly affected by a subharmonic perturbation of unit peri-
od. For clarity, a slightly different convention was used than
with the preceding three figures: Instead of keeping the
phase of X fixed while advancing that of ¥ by a half unit, the
phase of X was decreased by 0.25 while that of ¥ was in-
creased by 0.25 to trace out half a time period so that the
peaks are quasistationary in the graphical frame of reference.

The twin crests of the cnoidal wave do not merge under
the influence of the perturbation, but instead execute a small
oscillation about their mean positions. This is perfectly con-
sistent with interpreting this case as the collision of two soli-
tons that differ slightly in amplitude. Lax'® has shown that,
in the words of Fornberg and Whitham,'® “there are always
two maxima; the wave approach each other and exchange
roles, but then shear away and do not pass through each
other.” Another way to look at this to examine the dimple at
x = 0 at the time of the maximum soliton overlap in Fig. 2.
As the ratio of the amplitude of the two solitons becomes
closer and closer to 1.0, this local minimum at x = 0 be-
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FIG. 5. Same as Figs. 2—4 except that the polycnoidal wave is a simple cnoi-
dal wave of half-unit period subject to a weak perturbation of unit spatial
period. For clarity, a different frame of reference was used such that the
phase of the angle variable X was decreased by 0.125 between graphs while
that of ¥ was increased by the same amount. Solid curve (#, = 0, ¢, = 0),
dashed curve (¢, = — 0.125, ¢, = 0.125), and dotted curve (¢, = — 0.25,
¢, =0.25). T,, = 3.00, T,, = 0.851, and 75, = 1.811.
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comes deeper and deeper until the two solitons are separated
by a wide, deep trough even at the time of closest approach.

One can also interpret Fig. 5 in terms of constructive
and destructive interference between two periodic waves of
different phase speeds. Although not obvious on the graph,
the right peak in Fig. 5(b) is in fact slightly taller than the left
peak as a result of constructive interference at x = 0.25 with
the crest of the k, = 1 component while the left soliton is
shrunk a bit because it rests on the trough of the perturbation
atx = — 0.25. As the perturbation continues to move rela-
tive to the tall peaks, it will reinforce and weaken each large
crestin turn. Thus, one has two alternative interpretations of
this case that lead to the same conclusions: (i) two colliding
solitary waves of almost identical amplitude on each period-
icity interval, or (ii) a simple cnoidal wave of half-unit period
whose crests swell and accelerate or shorten and slow down
as the crests and troughs of the sine wave perturbation move
through them.
IV. THE GEOMETRY OF THE X-Y PLANE

Although the samples of the preceding section illustrate
the general characteristics of double cnoidal waves, there are
some important, but subtle, aspects of polycnoidal waves
which can be explained only by examining 6 (X,Y) and its
relation to u(x,? ). As noted in Ref. 1, a heuristic way of con-
structing a polycnoidal wave is to simply repeat the usual
multiple soliton solution over the whole x-axis. The resulting
approximation is obviously periodic, but generally is not an
exact? solution of the Korteweg—de Vries equation.

Boyd' shows, however, that Hirota’s transformed sin-
gle solitary wave solution,

F=1+exp(2sX), (4.1)

which gives the usual hyperbolic secant squared soliton
upon taking the second logarithmic derivative, can be gener-
alized to a “bi-Gaussian”

O (x,t)=exp[ — s(X — m/2)* /7]

+ exp[ — s(X + 7/2)/7]. (4.2)

If one repeats (4.2) over the whole interval, one obtains the
Gaussian series of the one-dimensional theta function,
which is an exact solution of the Hirota—K orteweg—de Vries
equation, and therefore generates an exact solution of the
KdV equation upon taking the second logarithmic deriva-
tive. Figure 6, which is borrowed from Boyd,®illustrates the
procedure. The shape of the polycnoidal wave is determined
by the theta function; the only remaining unknown (for the
ordinary cnoidal wave) is to solve a pair of algebraic equa-
tions to determine the nonlinear phase speed ¢, in the “an-
gle” variable X.

The same concept applies for higher polycnoidal waves.
In particular, a “tetra-Gaussian” consisting of four Gaus-
sian functions of identical shape but with peaks located at the
four corners of a unit square (X = + 0.5, Y = + 0.5) gives
the usual double soliton of the KdV equation on an infinite
domain in x. (A proof is given in Appendix B of Ref. 6.)
When this tetra-Gaussian is repeated with unit spacing over
the whole of the X-Y plane, it generates the Gaussian series
of the theta function.

In the near-double soliton regime (small 7', T5, or
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FIG. 6. Schematic diagram showing the relationship between the bi-Gaus-
sian and theta function solutions to Hirota’s transformed version of the
KdV equation. The left side shows the situation when the domain is un-
bounded: The solution to the transformed KdV equation has just two peaks
on all of Xe[ — 0, 0], and the second logarithmic derivative of this gives a
single crest (corresponding to the valley betwen the two peaks of the bi-
Gaussian) which is the usual solitary wave. When the bi-Gaussian pattern is
repeated with even spacing over all X, it generates the Gaussian series of the
theta function. This, as shown on the right, is a spatially periodic solution of
the transformed KdV equation and its second logarithmic derivative is the
simple (N = 1) cnoidal wave. [Taken from Boyd'.] For the double cnoidal
wave, the basic unit is a tetra-Gaussian with peaks at the four corners of a
unit square in the X-Y plane which generates the double solitary wave when
the domain is unbounded. The idea is the same, however, repeating this
basic unit over all of X- ¥ space with even spacing gives a periodic solution to
the transformed KdV equation whose second logarithmic derivative with
respect to x is the double KdV cnoidal wave.

equivalently, large R,, and R,,), the Gaussians are sharply
peaked so that the full infinite series can be approximated on
the unit square by the sum of the four Gaussians whose peaks
are at its corners. The reason that it is not possible to ap-
proximate the series by a single Gaussian is that u(x,z) is
obtained by taking the second logarithmic derivative, which
for a single Gaussian would be u(x,? ) = const. The solitons
actually lie in the valleys between the peaks of the Gaussians,
and the center of the square where the two valleys meet is
also where the solitons collide.

Figure 7 shows the graph of the theta function in the X-
Y plane with the contours of the function

Ux,Y)= 12{k%(10g O )xx + 2k ky(log 6 )xy

+ k3(log 0)yy + ] (4.3)
also plotted. (The constant « has been added so that the
solitons asymptote to 0, as in Figs. 2-5.) The function u(x,#)
which actually solves the KdV equation is obtained from
U(X,Y) by drawing a line of slope k,/k, through the origin
(X = 0, Y = 0). The values of U (X, Y ) along this line then give
the values of u(x,t = 0). The function u(x,?) is obtained at
later times by moving the line with the velocity — ¢,inX and
— ¢, in Y consistent with the definitions (for k, =k, = 1)

(4.4)

[The reason for the minus signs is so that u(x
=0,t) = U( — ¢;t, — c,t ) and similarly for other x to agree
with (4.4).]

If the solitary waves collided without a shift of phase,
then (i) the theta matrix and inverse theta matrix would be
diagonal, i.e., T}, = R, = 0; (ii) the ridges of U (X,Y ) would
be parallel to the X and Y axes. In reality, however, thereisa

X=x—cit, Y=x—c,t
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FIG. 7. Contours of the two-dimensional theta function {dashed lines) and
of U(X,Y) in the unit square whose cornersare X = + 0.5and Y= 1+ 0.5.
This is in the double solitary wave regime; the Gaussian series was used with
k, =k, =1,and R, = 50, R, = 2.913, and R,, = 30. The function u(x,?)
for this case is shown in Fig. 2.

phase shift of both solitary waves after the collision—the
taller soliton is temporarily accelerated while the shorter one
is deaccelerated during their encounter—so the ridges of
U (X,Y ) are tilted with respect to the axes. The magnitude of
the slope is given in Appendix C of Ref. 6 along with other
formulas describing the contours of U (X, Y ) and so on, but
the mere fact of the slope is enough to show one rather star-
tling fact: The phase velocities ¢, and ¢, are not the speeds at
which the solitons travel when outside the collision region.

In the next section, the reason will be discussed in de-
tail. In brief, one concludes that ¢, and ¢, represent the aver-
age velocities of the two solitary waves, and these averages
are changed from the usual noncolliding soliton speeds be-
cause of the phase shifts that occur during the collision.
When the spatial domain is unbounded and there are but two
solitons, the collision occurs but once. With spatial periodic-
ity, the collisions recur endlessly and the average speed of the
solitons is altered. Before turning to this, however, we must
first explore the role of wavenumbers.

Figure 7, which shows a unit square in the X-Y plane,
implicitly assumes k, = k, = 1. When &, = 2, however, ¥
varies by 2 when x varies by 1. Thus, for &, = 1 but k, = 2,
the whole of the rectangle shown in Figure 8 projects on a
unit interval in x. The line which takes U (X, Y} to u(x,f ) now
has a slope of 2, and the reader can see (by laying a ruler
between the lower left and upper right corner) that for part of
each temporal period, there are three solitons on each unit
interval in x: one tall solitary wave and two short solitary
waves. Figure 9 shows u(x,t) for the same wave as in Fig. 8.
Thus, the wavenumbers are extremely important in deter-
mining the qualitative nature of the flow, and Sec. VI will
examine that role in detail.
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FIG. 8. Contours of U(X,Y ) in the rectangle whose corners are X = 4 0.5
and Y = 0.5, + 1.5for k, = 1 but k, = 2. When converted from Xand ¥ to
the actual spatial coordinate X, all of this rectangle projects onto a unit
intervalinx. R, = 32, R, = 2.20,and R,, = 8. The corresponding u(x, ) is
shown in Fig. 9.

V. PHASE SPEEDS AND SOLITON VELOCITIES

As shown in Ref. 6, the overlap of the solitons on one
unit periodicity interval in x with those of another creates
corrections to ¢, and ¢, which can be calculated as a double
perturbation series in the parameters exp(— R,;) and
exp( — R,,). Since the solitons decay exponentially with x [as
exp( — R,;|x|) and exp( — Ry,|x|)], it follows that these
“overlap” corrections decrease exponentially with the half-
widths of the solitary waves. The differences between ¢, and
¢, and the velocities of the solitons, however, decrease only
linearly with the widths of the solitons, and are therefore
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FIG. 9. The KdV solution u(x,t ) for the wave whose theta function is plotted
in Fig. 8. As with Figs. 2—4, the phase of Xis kept fixed so that we view u(x,?)
in a frame of reference moving with the phase velocity c,. In this reference
frame, the wave is periodic in time with a period P = 1/c,. Solid curve
(t = 0), dashed curve {t = P /4), and dotted curve (t = P/2).
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something quite different in nature.

One proof of this comes from the observation that the
slopes of the ridges of U (X, Y ), which are responsible for mak-
ing the phase and soliton velocities differ, are given by

—R,)/R; and — R,,/R,,, respectively, as shown in Ap-
pendix C of Ref. 6. Since R, remains O (1) when R, and R,
become large, it follows that the slopes of the soliton ridges in
the X-Y plane become increasingly parallel to the ¥ and X
axis, respectively. The angles between the solitons and the
axes, however, are linear functions of 1/R ; and 1/R,, while
the “overlap” corrections, i.e., the higher-order terms in the
perturbation series of Ref. 6, are decreasing exponentially in
these same variables.

A more direct way is to simply calculate these quanti-
ties to zeroth order in perturbation theory, which is equiva-
lent to truncating the infinite theta function series to the
minimum of four Gaussian functions needed to generate the
double solitary wave. It is shown in Ref. 6 that the phase
velocities ¢, and ¢, that appear in the “angle” variables X and
Y are obtained from the “pseudofrequencies” ¢, and ¢, by
solving the pair of linear equations

(— Ry k) (=Rpk)| e ‘ € (5.1)
(—Rpk) (—Rpk)llel =1 &
To lowest order
€= —cs, i=12, (5.2)
where
6;=R,; k;+R,k;, i=12, j#i (5.3)

gives the width of each soliton and where ¢;* is the “free”
velocity of a soliton, i.e., the speed at which the soliton tra-
vels when not in collision with another. When “free,”
u(x,t )=~367 sech®[§;(x — ¢;* )] in the neighborhood of the
ith soliton. If we add a constant'® to u(x,t) and the phase
speeds so that the solitons asymptote to O for large x—the
result is still a polycnoidal wave solution of the KdV equa-
tion—then

=8, i=12 (5.4)
which is the usual formula as given in Whitham,?' for exam-
ple, although he uses « in place of our §.

Through elementary algebra, one can show from (5.1)

through (5.4) that
(ci! — ¢5”) R1b,
kl(Rll R22 - R12 RIZ)

In the extreme soliton regime (R,;, R,,>1), R}, R,,>R,,,
which permits (5.5) to be simplified to

G = cslm + (Cs101 - CZOI) ky{R,/6,}. (5.6)

Now it can be shown (Whitham?®' and Appendix C of
Ref. 6) that the phase shift experienced by a soliton of ampli-
tude determined by R;, (which we shall call “type 1” for
short) after collision with a soliton of the other size is (R ,/
81), so (5.7) implies, reasonably enough, that the difference
between the “free” speed of the soliton and the correspond-
ing phase velocity in X is proportional to this phase shift—
which argues strongly that it is the phase shift that is the
cause of this difference. If this explanation is correct, how-

¢ =c 4 (5.5)
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ever, then (5.6) should also depend upon the frequency with
which a soliton of type 1 collides with a soliton of type 2.
Since &, determines the number of solitons of type 2 per unit
interval in x, it follows that k,(c* — ¢) is the frequency
with which a soliton of type 1 will collide with a soliton of the
other size per unit time. The wavenumber k,, which deter-
mines the density of type 1 solitons per unit interval of x, is
conspicuously missing from (5.6); it has no bearing on the
number of collisions between a particular soliton of type 1
and all the solitons of the other height because a type 1 soli-
ton collides only with the solitary waves of the other ampli-
tude. Thus, (5.6) can be rewritten schematically as

¢; = ¢ + {number of collisions/unit time} { phase shift/

collision} (5.7

and similarly for c,.

Thus, as mentioned earlier, ¢, and ¢, may be properly
interpreted as the average speeds of the solitary waves while
their instantaneous speeds (outside collision zones) are given
by the different quantities ¢ and ¢5'.

VI. WAVENUMBERS AND THE SPECIAL MODULAR
TRANSFORMATION

The wavenumbers k, and k, have different roles in the
double-sine wave and double-soliton regime. In the near-
linear regime, &, and k, are the actual wavenumbers of the
two sinusoidal, noninteracting waves that approximate the
polycnoidal wave. In the double-soliton regime, the widths
of the solitary waves are given by the “pseudowavenumbers”
defined by (5.3) above, and k, and &, instead give the number
of solitons on each interval. This was shown explicitly by
Figs. 8 and 9 in Sec. IV, where a double cnoidal wave with
three solitons on each unit interval was displayed. Since
R,, > R,, for this case and k, was the wavenumber equal to
two, the pair of identical solitons was shorter than the third,
but one could mix two tall solitons with a single shorter one
on each unit interval by either choosing &, = 2 instead or
taking R,, larger than R,,. More exotic combinations are
possible and it will be argued in the next section that Hy-
man®? computed a double cnoidal wave with four solitary
waves on each spatial period, three tall and one short.

This all seems rather straightforward, but in reality the
issue of wavenumbers is so complicated as to demand an
entire separate article unto itself (Ref. 7). The Serpent in
Eden is that the different roles assigned to the wavenumbers
for solitons and sine waves are contradictory. Figures 7-9
show clearly that the usual situation of two solitons of une-
qual size per unit interval in x demands k, = k, = 1, but in
the sine wave regime, this is absurd because the linear disper-
sion relation demands that two infinitesimal amplitude
waves of the same wavenumber must also have the same
phase speed, and the double cnoidal wave collapses into the
ordinary single cnoidal wave. The simplest possibility that
preserves two distinct phase speeds and “phase” variables
and is a true double cnoidal wave is to take k, = 2k, i.e., one
wave is the second harmonic of the other.

The resolution of this difficulty lies in a remarkable fact
that at first seems only to put us into more trouble: Each
theta function of two or more dimensions can be written in a
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denumerable infinity of ways via the so-called “special mo-
dular transformation” which is the central theme of Ref. 7.
The theta matrices and wavenumbers are transformed by
matrices whose elements are integers so that the equivalent
representations of a theta function with integral wavenum-
bers are restricted to those for which the new wavenumbers
are integers also.

Physically, of course, there is no ambiguity at least in
the limits of very large or very small wave amplitudes: In the
double-soliton regime, there is only one representation for
which the wavenumbers give the actual density of solitary
waves on the unit interval and the phase speeds of the phase
variables are the average velocities of the solitons, and in the
double-sine wave regime, there is again only one way of writ-
ing the theta function in which the wavenumbers and phase
speed of its arguments X and Y are the actual wavenumbers
and phase speeds of the two sine waves. The special modular
transformation is thus a way of providing the theta function
with a mathematical disguise which alters the arguments
and parameters of the theta function without altering the
Korteweg—de Vries solution which it generates. It would be
quite foolish, however, to dismiss the modular transforma-
tion as a mere mathematical curiosity.

In the first place, it implies that the nonlinear implicit
dispersion relation given in Ref. 6, which must be solved to
determine ¢, ¢,, and the diagonal theta matrix element, has
nonunique solutions. (In fact, an infinite number of them.)
Some care is needed to insure that one computes in the
“physical” representation so that the phase speeds comput-
ed are those of the actual components of the polycnoidal
wave being sought, and not merely mathematical disguises
for something quite different.

In the second place, the special modular transformation
resolves the dilemma of needing different wavenumbers to
make sense of the simplest double-soliton and double-sine
wave regimes. If one solves the residual equations by varying
the diagonal theta matrix elements in small steps, the so-
called ‘““continuation” method, one finds upon graphing
u{x,t ) that the mode which is the sum of one sine wave with
k, = 1 plus another with k, = 2 does indeed smoothly con-
tinue into a pair of solitary waves, one tall and one short, on
each unit interval. The phase speeds so computed, however,
are not those of the actual solitons, but can be made into
them by taking that modular transformation which reduces
the wavenumber from k, = 2 to k; = 1. In a similar way, if
one begins with the double soliton for k, =k, =1 and
marches in the opposite direction of decreasing amplitude,
the phase speeds computed from the residual equation will
not be those of the sine wave and its second harmonic that
dominate u(x,?) when the amplitude is small, but can be
changed into the physical wave speeds through the modular
transformation that sends &, from 1 to 2. The whole business
is discussed thoroughly with numerical tables in Ref. 7.

The modular transformation makes it necessary to in-
troduce some notation. A pair of numbers written in square
brackets, for example, [1,2], is used to denote the wavenum-
bers of the Fourier representation with k, written first. A
superscript “P*’ can be added to denote that the “physical”
representation is meant and not one of the infinite number of
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disguises allowed by the mathematics. (When there is no
danger of confusion, the superscript P will be omitted; when
this notation is used elsewhere in this series of papers, the
“physical” representation will always be meant unless ex-
pressly stated otherwise.) In a similar way, curly brackets,
i.e,, [1,1] will be used to denote the wavenumbers of the
Gaussian series of the theta function. The author apologizes
for burdening physics with more notation, but it is unavoid-
able. It is necessary to introduce separate notation for the
Fourier and Gaussian series because

[1,2]7={1,1} % (6.1)

In words, the mode which is the sum of a wave and its second
harmonic for small amplitude is the sum of one tall and one
short solitary wave for large amplitude.

Reference 7 goes on to describe in some detail the iden-
tifying characteristics of the “physical” representation.
First, it is that for which the off-diagonal theta matrix ele-
ment is small in comparison to the diagonal theta matrix
elements. Second, it is the representation employed by the
perturbation series of Ref. 6—the perturbation series always
give answers in the “right” representation, in other words.
The perturbation series suggest 7', and R, are always posi-
tive, so a representation in which either of these off-diagonal
elements is negative is almost certainly not the physical rep-

resentation.
Finally, one can give a graphical definition. Figure 10

compares U(X,Y) for two different {1,2} modes. The left
panel is simply a repeat of Fig. 8; the corresponding u(x,t ) is
given by Fig. 9 and truly has three solitary waves on each
unit interval in x. The right panel, however, is in an unphysi-
cal representation. Notice that the repeated soliton ridges
have a steep positive slope rather than a shallow negative
slope as in the left panel. The reason is that R, is large and
negative instead of being small and positive as it should be.

U

X X

FIG. 10. Contours of U (X, Y ) for two theta functions withk, = land k, = 2.
{a) [left panel] This is identical with that shown in Fig. 8; this choice of wave
numbers is the physical representation of this wave, so this mode is denoted
{12} ©. (b} [right panel] This is actually a {1,1} * mode in disguise with
R,;=74.17, R, = —27.09, and R,, = 30. Although (b) looks quite differ-
ent from Fig. 7, they are plots of the same theta function in different repre-
sentations; when the function shown in (b) is converted back into (x, ) co-
ordinates, the resulting u(x,?) is that shown in Fig. 2.
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By laying a ruler across the figure at a slope of k,/k, i.e., 60
degrees, one can convince oneself that even though one
wavenumber is 2, there are in fact no more than two solitons
present at any time. The actual u(x,t ) for Fig. 10{b) is in fact
that graphed in Fig. 2.

VII. PREVIOUS CALCULATIONS OF DOUBLE CNOIDAL
WAVES

Although there have been a huge number of abstract,
theoretical papers on polycnoidal waves, there have been
only two explicit attempts to calculate and graph KdV po-
lycnoidal waves before this present work. Both have limita-
tions which illustrate the usefulness of the ideas developed in
the two companion papers (Refs. 6 and 7).

Hyman?*? used a variational principle of Lax’ to numeri-
cally calculate a number of case studies of double cnoidal
waves, although only one is described in detail in his paper.
By carefully computing the trajectory of the maxima, he
showed “‘the peaks move with two distinct speeds. In any
spatial period three of the peaks are traveling with one speed
while the fourth is traveling faster.” This inspired the re-
mark by other researchers,?® “The general shape [of u(x,? )] is
still obscure, though a large body of numerical information
has been obtained by J. M. Hyman; for example, he finds
that for N = 2, the number of peaks and valleys is usually 4
and on occasion 5.” The case illustrated in Hyman’s own
paper has 4 peaks and 4 valleys.

In light of what has been presented earlier here, it is
difficult to escape the conclusion that Hyman actually com-

puted only double cnoidal waves with the physical represen-
tation {1,3} %, i.e., four solitons on each unit interval with
three of one size and a fourth of another, and missed the
{1,2} For {1,1} ¥ modes. Figures 2 through 5 show clearly
that the conclusion that the “number of peaks and valleys is
usually four” is nonsense; the {1,1} * — [1,2] * mode has
only two peaks and two valleys, sometimes less. The conclu-
sion would seem to be that Lax’ variational principle com-
bined with numerical nonlinear optimization is a poor way
to investigate polycnoidal waves.

Hyman’s paper is still of interest, however, because he
superimposed random perturbations upon his double cnoi-
dal waves and found them to be remarkably stable. It seems
probable that this is true of all polycnoidal waves, but a proof
is lacking, and Hyman’s paper is at present the only evidence
in favor of this hypothesis.

Hirota and Ito® have computed a double cnoidal wave
by numerically solving the implicit dispersion relation. Ta-
ble I gives their results in their original notation, translates
their results into the notation used here, and then compares
the results with the Fourier and Gaussian perturbation series
derived in Ref. 6. The result is a rather resounding triumph
for perturbation theory: The second-order Fourier series
gives all three physically significant unknowns to within 4%
relative error while the zeroth order Gaussian series, i.e., the
tetra-Gaussian double soliton, gives these same three quanti-
ties to within 4% error also. The conclusion is that number
crunching is not really necessary: for most purposes, the per-
turbation series of Ref. 6 are more than adequate.

TABLE I. A comparison of the numerical calculations of a double cnoidal wave from Hirota and Ito® with Fourier and Gaussian perturbation theory. The
first line of the table gives the numerical results of Hirota and Ito in their own notation. The second line gives the same exact solution in terms of the notation
and conventions employed here. (Their theta matrix elements must be multiplied by =, their constant of integration A divided by — 2 to give my 4, and their
frequencies converted into phase speeds by multiplying by — 1/k,. Because I normalize k, to 1, it is also necessary to multiply the phase speeds by 6.25? and 4
by 6.25* to increase the wavenumbers by a factor of 6.25 = 1/0.16.) The third part of the table gives the results of Fourier perturbation theory; because of the
smallness of the nome g, ~¢,?, the terms in ¢, were neglected in computing the first-order solution and ¢,* in the second-order solution. Relative errors are
given in square brackets. The fourth part of the table gives the results of Gaussian perturbation theory for R,; = 14.38, R,, = 6.478, which correspond to the
T,, and T,, values employed in the rest of the table. Normally, it would be necessary to determine these R, from the corresponding T, through some kind of
iterative procedure as explained in the text.

Hirota-Ito Notation

k, k, T Tr2 A @, @y T12
0.16 0.32 0.464 1.16 —2.01 — 0.086 1.23 0.297
Boyd Notation
k, k; T, T 4 €y [+ Ty,
1.0 2.0 1.458 3.64 1533 21.00 — 150.2 0.933
Fourier Perturbation Theory
A € ¢, Ty,
Oth order 0 [100%] — 39.5 [300%)] — 157.9[5.2%] 1.099 [17.8%]
1st order 1013 [34.5%)] 11.8 [43.5] — 157.9{5.2%] 0.936 [0.27%]
2nd order 1 547 [0.89%] 20.2 [3.8%] — 150.4 [0.15%] 0.933 [ <0.1%]
Gaussian Perturbation Theory
A ¢, [ Ry,
Oth order 1443 [5.8%]) 20.3 [3.6%] — 149.0 [0.79%] 2.335[0.56%]
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Their paper, however, is of further interest because it
also computes a triple cnoidal wave. This has only seven
unknowns but there are eight residual equations. Knowing
from the “Hill’s spectrum method” that theta function solu-
tions should exist, they boldly chose seven of the eight equa-
tions and solved them as a closed system, and then verified
after the fact that the extra equation was also satisfied to
within machine precision. It would be extremely interesting
to have an analytical proof of the redundancy of the residual
equations for N = 3 and higher, as opposed to their numeri-
cal proof, but none is yet known.

Thus, although the analysis of Refs. 6 and 7 makes it
possible to improve on these early, limited calculations by
Hyman and by Hirota and Ito, both papers are still valuable

for their intelligent use of numerical solutions to suggest as -

yet unproven theorems for the future.

Vlil. THE DOUBLE CNOIDAL WAVE IN PERSPECTIVE

The methods employed here and in Refs. 1, 6, and 7 can
be extended, with a few additional tricks, to most or all of the
“exactly integrable,” soliton-admitting equations which are
now known to be solvable via theta functions through the
“Hill’s spectrum” method. The Korteweg—de Vries equa-
tion is one of several whose Hirota-transformed equivalent is
a single bilinear differential equation: applying the new al-
gorithms to the Boussinesq equation,

Uy — Upx — Uyyrx — [uZ]xx = O’ (81)
for example, is merely a matter of altering the function § ( p.g)
which is defined in Ref. 6. Other soliton equations like the
sine-Gordon equation and cubic Schrddinger equation have
Hirota equivalents which are systems of bilinear equations
rather than a single equation. For these, there are still some
holes even in the Hill’s spectrum method, so the class of
“coupled bilinear” equations requires further work. Still,
there seems little doubt that most of the concepts developed
here (using the Gaussian series for large amplitude and the
Fourier series for small, reducing the partial differential
equation to the algebraic residual equations, computing ex-
plicit perturbation series, and applying the modular trans-
formation) will be important for these other types of soliton
equations, too.

A much harder question is to relate the KdV polycnoi-
dal waves to the nonlinear solutions of similar differential
equations that are not “exactly integrable” via the inverse
scattering or Hill’s spectrum algorithms. The Gaussian se-
ries, which converges most rapidly when the wave amplitude
is large, is a specific property of theta functions and does not
carry over to waves that cannot be described in terms of theta
functions.

Reference 1 (Appendix B) has shown, however, that it is
possible to compute Fourier series representations for polyc-
noidal waves by using Stokes’ expansions, which is a particu-
lar case of the singular perturbation technique known as the
“method of multiple scales,” without employing theta func-
tions in any sense at all. The Stokes’ expansion strongly sug-
gests that double and triple and N-polycnoidal waves exist
for almost any species of neutral, nondissipative waves
whether the governing equation is ‘““exactly integrable” or
not.
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This hypothesis must be qualified in several obvious
ways. First, a perturbation series for a wave is not quite the
same thing as an existence proof for the wave. For the
Korteweg—de Vries equation, the Hill’s spectrum method
shows that the theta series converges for all values of the
wave amplitude; the corresponding Fourier series for a non-
integrable equation may have only a finite radius of conver-
gence, or perhaps be an asymptotic series with no radius of
convergence at all.

Second, numerical experiments with nonintegrable dif-
ferential equations have shown that their solitons collide ine-
lastically with often the creation of a new soliton or the per-
manent destruction of an old one; such solutions cannot be
classified as (limiting cases of) polycnoidal waves. However,
this does not contradict the hypothesis that polycnoidal
waves exist for nonintegrable equations, too. What makes
polycnoidal waves so important for the Korteweg~de Vries
equation is that they are complete, that is, the general initial
value solution can be approximated to an arbitrary degree of
accuracy by an N-polycnoidal wave of sufficiently large V. It
seems probable that polycnoidal waves exist for at least some
nonintegrable partial differential equations, but lack this
property of initial value completeness. In other words, for
nonintegrable equations, there are solutions which cannot be
approximated to arbitrary accuracy by polycnoidal waves.

Itis known, however, that for some nonintegrable equa-
tions which are closely related to integrable equations, the
degree of inelasticity seems to be small. (This notion of
“nearly integrable” equations is well developed with many
examples in the review by Makhankov.?*) Perhaps with bet-
ter understanding of polycnoidal waves, it will be possible to
put a bound on the nonpolycnoidal part of the solution and
still apply the concept of a polycnoidal wave, at least qualita-
tively, to such nearly integrable equations.

IX. SUMMARY AND CONCLUSIONS

This article and its two companions (Boyd®’) have tried
to show that much can be learned about the generalized
cnoidal waves of the Korteweg—de Vries equations and relat-
ed equations by using rather elementary methods. The per-
turbation series of Boyd® provide an accurate means of cal-
culating both phase speeds and u(x,t) itself in all the
interesting parameter regimes. The Gaussian series is espe-
cially useful because it converges rapidly in precisely that
domain—Ilarge amplitude—where all normal perturbation
theories fail. The special modular transformation, which in-
volves nothing more esoteric than multiplying the theta ma-
trix by another matrix whose elements are explicitly given
integers, is essential in correctly interpreting the various
modes of the double cnoidal wave. The most important
mode is shown to be the sum of two solitary waves on each
unit interval in x for large amplitude and to be the superposi-
tion of two linear sine waves, with one being the second har-
monic of the other, for small amplitude.

The directions of future research are fairly clear. One is
to simply apply the formalism developed here to other soli-
ton equations like the Boussinesq equation (8.1) and turn the
crank.

A second, more interesting direction is to explore the
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connection between polycnoidal waves and the general ini-
tial value problem with spatial periodicity. The Hill’s spec-
trum method provides one complicated and indirect means
of calculating that polycnoidal wave which approximates a
given, arbitrary initial condition. It is known, however, that
one can obtain a simpler answer by employing the method of
multiple scales (a Stokes’ expansion-with-a-twist, if you will)
for small amplitude, and it appears possible to extend this
into an effective numerical algorithm for any amplitude.

A third line of attack is to explore those other soliton
equations whose Hirota bilinear form is a pair of equations
rather than just one. The sine-Gordon equation and the cu-
bic Schrodinger equation are examples. There are still some
gaps even in the Hill’s spectrum theory for these equations,
so the extension of the ideas presented here to the coupled-
bilinear class of systems is far from trivial. Nonetheless, one
expects that perturbation theory, Gaussian series, the alge-
braic residual equations, and the modular transformation
will all play a role.
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APPENDIX A: THETA FUNCTION NOTATION

Mathematicians normally define the theta function via

o[em= p) exp{m’ [ 53 "'f("" " 67)

=1 =1

e 2ag b D6l

(A1)

¢ is the N-dimensional vector of dependent variables; in the
theory of polycnoidal waves, &, =kx—c;t)+ ¢,
i = 1,...,Nasin (1.1). The quantity [{ ], the “characteristic”
of the theta function, consists of two N-dimensional row vec-
tors written one above the other with each element restricted
to be either O or 1. The vector n = (n,1,,...,1 ), and the sum-
mation is taken over all possible positive and negative inte-
gers (including O) for each of n,,n,,...,1y.

In applications to KdV polycnoidal waves, one can pick
the characteristic at will. The usual choice, as in Nakamura®
and Boyd, ' is to use 6 [ ] (6,T). For the Gaussian series (soli-
ton regime calculations), the formulas are a little simpler if
one employs

T[S N

Note that the two differ only in choice of the phase of &, but
like all wave phases, these are arbitrary anyway. The choice
of theta characteristic is physically irrelevant.

Although Ref. 7 uses the theta matrix in the mathemati-
cian’s form (A1) [for convenience in discussing the deriva-
tion of the “special” modular transformation from the gen-
eral transformation given by Rauch and Farkas®], it is
easier in most applications to eliminate the factor of 7i by
defining the real theta matrix elements
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(A3)

For the ordinary cnoidal wave T',,=w/s, where s is the pa-
rameter used in Ref. 1.

For the Gaussian series, it is similarly convenient to
define the elements R,; of a square matrix R, where

R=27T"', (A4}
T =2r"R™, (A5)

where T in (A4) and (AS) is the matrix whose elements are
T;. The factors of 7 in (A4) arise from the factor of 7 in (A1)
and (A3) and also from a similar factor of 7 when the Gaus-
sian series of the theta function is expressed in terms of the
inverse of the matrix whose elements are ¢;. The factor of 2 is
inserted into (A4} to eliminate a huge number of 2’s that
would otherwise appear in the formulas of the Gaussian se-
ries perturbation theory.

Ty= — mit.

APPENDIX B: CORRECTIONS AND CLARIFICATIONS
FOR BOYD?

This earlier paper contains a number of typographical
errors. A comma should be inserted between n’ and ¢ on the
left-hand side of (6.6). The letter & in the argument of & on the
left-hand side of (7.1) should be replaced by €. In Eq. (5.3),
12 sech? [sX ] should be 12s* sech[sX ]. In (7.9), a Gaussian
factor was omitted from the right-hand side of (7.9); the cor-
rect transformation is given by (2.10} of Ref. 7.

The author’s earlier article makes the remark (p. 384)
that “it is conventional to define the multidimensional theta
function so that it is periodic with period 2.” This is techni-
cally true for the general theta function, but it is somewhat
misleading since the special cases 8 [§] and 8 [} ]—the
only ones needed for polycnoidal theory—are periodic with
period 1, as true of ali the solutions discussed in this present,
later article and its companions (Refs. 6 and 7).

Finally, as noted in Ref. 20, Toda showed the ordinary
cnoidal wave has the exact series representation

— 24s

o0

+12¢ 5
n= — o
[integers]

The remark in Ref. 1 that repeating solitary waves with even
spacing over Xe[ — o0, 0] as in (B1) could give only an ap-
proximate solution to the KdV equation is incorrect. Toda’s
proof was based on the infinite product of the theta function.
Reference 26 shows that a more general method of proofis to
apply Poisson summation—the same transformation that
also generates the Gaussian series of the theta function—
directly to the Fourier series of #(x,? ) given by (A9) of Ref. 1,
and gives similar hyperbolic series for the elliptic functions
dn, cn, and sn. The handbook of Gradshteyn and Ryzhik*’
lists some 21 other known Fourier series for various ratios
and combinations of elliptic functions, and all can presuma-
bly be Poisson summed in the same way.

Unfortunately, the Fourier coeflicients for the hyperel-
liptic functions, i.e., (x,z ) for N> 1, are not known although
the theta function coefficients are known for all V. As a re-
sult, the Poisson summation method can only be applied to
the theta function except for the special case of the ordinary
cnoidal wave. Consequently, the author’s earlier comment

ulx,t) = sech?[s(X — nm)]. (Bl)
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that the theta functions provide the only efficient way of
generalizing solitary waves to spatially periodic functions

remains true for N> 1.
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used to generate the graphs; as explained in Appendix A, 8 [‘,' ] is more
convenient in the solitary wave regime, but it differs by phase factors from
the 6 [§ ] which is used everywhere when discussing theta Fourier series.
Second, expanding the logarithm of the theta function and then taking the
second derivative multiplies all Fourier components by a minus sign.
Thus, the “fundamental” referred to in the text is — cos{2m(X
+ 1)l = cos(27X ). Third, the graphs were made in the [1,1] representa-
tion, i.e,, k; = k, = 1, which is unnatural for Fourier series as explained in
Sec. VI of this work, in Appendix A of Ref. 6, and Sec. VI of Ref. 7. The
second  harmonic is  proportional  to —cos[2mX + Y
+ 14+ 4)l= — cos[2m{X + Y)]. Thus, the fundamental and second har-
monic are out of phase at # = 0 at x = 0 and the fundamental has a peak
there, even though naive use of (2.3) would seem to imply both should be
negative for x = ¢ = 0. I ask the reader’s indulgence for this long-winded
explanation, but as is the theme of Ref. 7, the need to use different sets of
wavenumbers to interpret the double cnoidal wave as sine waves or as
solitons sometimes even left the author confused!
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By means of the theorems proved earlier by the author, the problem of the double cnoidal wave of
the Korteweg—de Vries equation is reduced to four algebraic equations in four unknowns. Two of
the unknowns are the nonlinear phase speeds ¢, and ¢,. Another is a physically irrelevant
integration constant. The fourth unknown is the off-diagonal element of the symmetric, 2 X 2
theta matrix, which in turn gives the explicit coefficients of the Riemann theta function. The
double cnoidal wave u(x,t ) is then obtained by taking the second x-derivative of the logarithm of
the theta function. Two separate forms of these four nonlinear “‘residual” equations are given.
One is obtained from the Fourier series of the theta function and is useful for small wave
amplitude. The other is based on the Gaussian series of the theta function and is highly efficient in
the large amplitude regime where the double cnoidal wave is the sum of two solitary waves. Both
sets of residual equations can be solved via perturbation theory and results are given to fourth
order in the Fourier case and second order in the Gaussian case. The Gaussian-based perturbation
series has the remarkable property that it converges more and more rapidly as the wave amplitude
increases; the zeroth-order solution is the familiar double solitary wave. Numerical comparisons
show that the two complementary perturbation series give accurate results in all the important
regions of parameter space. (The “unimportant” regions are those in which the double cnoidal
wave is an ordinary cnoidal wave subject to a very weak perturbation.) This is turn implies that
even for moderate wave amplitude where the nonlinear interactions are not weak, and yet the
solitary wave peaks are not well separated, at least to the eye, it is still qualitatively legitimate to
describe the double cnoidal wave as either the sum of two sine waves or of two solitary waves of

different heights.
PACS numbers: 02.30.Jr, 02.60.Lj, 02.30.Mv

I. INTRODUCTION

In an earlier work, the author' discussed the use of theta
functions to study the dynamics of “polycnoidal waves,”
which is the term coined by the author for the spatially peri-
odic solutions of the Korteweg—de Vries (KdV) and other
soliton equations. The general theorems proved there, how-
ever, were applied only to the simplest case of the 1-poly-
cnoidal wave, i.e., the ordinary cnoidal wave discovered by
Korteweg and de Vries in 1895. This paper is the second
article in a three part follow-up™* which will apply the ear-
lier results to the double cnoidal wave of the KdV equation.
Throught this paper, the term *‘double cnoidal” will be used
interchangeably with *2-polycnoidal” to denote that gener-
alization of the cnoidal wave which is characterized by two
distinct phase speeds, amplitudes, and widths.

One major theme of Ref. 1 is that by using the Gaussian
series of the theta function for large amplitude waves and the
complementary Fourier series for small amplitude waves,
one can calculate the single cnoidal wave through perturba-
tion series to very high accuracy for all values of the param-
eters. In the worst possible case, which is when the two series
converge at equal rates, it was shown that the zeroth-order
approximations give the phase speed to within 5% relative
error while the first-order approximation is accurate to with-
in 0.03%; the approximations for wave shape are similarly
accurate. The purpose of this article is to show that one can
also obtain good results for the double cnoidal wave by again
deriving two complementary perturbation series based on
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the Gaussian and Fourier representations of the theta func-
tion, respectively.
Although the Korteweg—de Vries equation

u, +uu, +u, =0 (1.1)

is a partial differential equation, the theta function series for
the double cnoidal wave contains only four free parameters:
The coefficients of the infinite series for the theta function
are completely specified once these four parameters are
known. Independently, Boyd® and Nakamura* were able to
show that the problem of finding the double cnoidal solu-
tions of (1.1) can be reduced to solving a system of four alge-
braic equations for the theta function parameters. This, to-
gether with the overlapping of the complementary large
amplitude (Gaussian) and small amplitude (Fourier) expan-
sions, makes it possible to derive efficient, accurate perturba-
tion series that describe both the phase speeds and shape of
the double cnoidal wave for all possible values of the param-
eters.

The next section derives these four algebraic equations,
the implicit dispersion relation, for both the Fourier and
Gaussian expansions. (The Fourier equations can be ob-
tained as a special case of the Gaussian.) Section III discusses
the general method of solving a set of nonlinear equations via
perturbation theory. Section IV and V give the actual results
for the Fourier and Gaussian expansion, respectively. Mixed
Fourier—Gaussian series are described briefly in Sec. V1. The
errors in these expansions are discussed in Sec. VII. The
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paper ends with a final section that summarizes what has
gone before and discusses the possibility of extending pertur-
bation theory to other exactly integrable soliton equations.

Il. THE RESIDUAL EQUATIONS (IMPLICIT DISPERSION
RELATION)

The solution u(x,? ) of the KdV equation is related to the
theta function via the transformation

u=12(In8),,. (2.1)
The theta functions themselves satisfy a transformed version
of the KdV equation which was first given by Hirota® and
which will therefore be referred to in what follows as the
“Hirota—Korteweg—de Vries” (HKdV) equation. The most
compact representation of this bilinear equation is in terms
of certain operators introduced by Hirota himself and de-
fined by

DX"D,'"(F-G)EK_Q__ J )”(i_i)’"
dx Ix'/ \dt o’

X F(x,t)G (x',t")] (2.2)

t'=1
where the notation indicates that x’ and ¢ * are to be replaced
by x and ¢ after the differentiation has been performed. The
HKdYV equation is then

(D.*+ D,D,)0-6)=2462 [HKdV], (2.3)

where A is a constant of integration which must be deter-
mined in the course of solution.

The theta function solutions of (2.3), dubbed *“N-poly-
cnoidal” waves in Ref. 1, are functions of the N-dimensional
Riemann theta function. The double cnoidal wave, the only
example considered here, is the special case N = 2. The clas-
sic theta function notation is discussed in part one of this
three part sequence (Ref. 2).

Here it will suffice to note that the “phase” or “angle”
variables are defined by

X=kix —cit)+ &y (2.4)
Y=ly(x —cyt) + ¢, (2.5)

where the constants &;, ¢;, and ¢, are wavenumbers, phase
speeds, and phase factors, respectively. Please keep in mind
that there is only a single spatial variable x; X and Y are
propagating arguments with no direct physical interpreta-
tion. Reference 2 describes how to pass from X-Y space to x-t
space in more detail.

The Fourier series for the theta function is

o o

o= 3 Y exp(— {Tyn® + 2T nin, + Tyony'))

= — o0 M= — o
[integers]

xXexp[2min, X + n,Y)1, (2.6)

where the sums are taken over all integers including 0. The
constants T,, T,, and T, are the elements of the so-called
“theta matrix.” For simplicity, the notation differs slightly
from the usual in that a factor of /7 has been absorbed into
theta matrix elements as explained in Ref. 2.

The complementary Gaussian series is
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0 ©

o= ¥ 2

nH=—w A= —

exp( - {(%)(X )

+ Rl )Y )+ (B2) 7+ i)

(2.7)

[half-integers]

where the sums now range over the half-integers, i.e,, 41,
+ 3, + 3, etc,, instead of over the integers as in the Fourier
series (2.6). The 2 X 2 symmetric matrix whose elements are
the constants R, R,,, and R,, is loosely called the “inverse
theta matrix” since it is proportional to the inverse of the
matrix formed from the T};’s that appear in the Fourier se-
ries.?

The next step is to simply rewrite the theta series as
functions of the physical variables (x,? ) using the definitions
of (X,Y) given above, substitute the series into the HKdV
equation, and collect terms. The resulting sums depend upon
how the bilinear operators of the HKdV equation affect a
typical pair of terms in the series, so it is useful to define such
a pair of terms as

F =exp( — (@/2)x* — Bxt — (y/2)t?)
Xexp( — [0, 4+ 6m, 4+ 6, 1x — €, + €1, + €, ]2),
(2.8)
G =exp( — (a/2)x* — Bxt — (y/2)t?)

Xexp( — [8in] + 8n5 +8,]x — [en] + 1) +¢€,]1),
(2.9)

where the Greek parameters (a, 3,7, and so on) are linear
functions of the theta matrix elements, wavenumbers, and
phase speeds that will be given explicitly in Sec. V. The forms
(2.8) and (2.9) are the natural definitions for the Gaussian
series, but they can be specialized to the Fourier series, too,
by setting the second-degree exponents &, 3, and y equal to
zero and replacing the pseudowavenumbers &8, and §, and
pseudofrequencies €, and €, by 2 7 i k,, and so on. Thus, it is
sufficient to consider the Gaussian case alone. Note that the
second-degree exponents are the same for all terms in a given
series; only the linear exponents are different and only
through the replacement of (n,n,) by (n],n;).

Defining a function zeta via
(D.*+D D, —24){F-G)

E§ (nl - n; » Ny — né; a, B;?’,51,52,61,62,A )FG (2.10)

one can use the theorems proved in Sec. VI of Ref. 1 to show
that for the HKdV equation,

g(m’n’a, ﬂ,yaal,az,el,fz,A )
= (m8, + n8,)* + (mb, + nd,)[(€, — 12a8,)m
+ (€, — 12a8,)n] + 12a° — 28 — 24. (2.11)

The residual function p(x,t ), which is defined by
plx,t)=D,* + DD, —24)6 - 6) (2.12)

becomes, after substituting either of the theta series (2.6) or
{2.7) into (2.12), invoking (2.10}, and collecting terms
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p=exp(—ax’ —2Bxt —yt’ —2 8,x — 2 ,t — 20 ) (times)
X Z z Pic €xp( — [8,] + 6k ]x
= _[u:e;e;]_w
—lej+&k]t— [P+ Pk ]) (2.13)

where both sums are taken over the integers for either the
Gaussian or Fourier theta series.

A theta series is a solution of the HKdV equation if and
only if p(x, }=0. Since the terms in (2.13) are linearly inde-
pendent, this in turn implies that

pjk = 0’ .] = 0,1,2,“-9 k = 0,1,2""9 (214)

for all integers j and k. Thus, by substituting an infinite series
into the differential equation, one reduces it to an infinite set
of coupled algebraic equations which determine the coefli-
cients of the series.

Since the theta function is uniquely determined by a
finite number of parameters (the three theta matrix elements
plus the wavenumbers and phase speeds), one seems to have
a problem: infinitely more equations than unknowns! Inde-
pendently, Boyd' and Nakamura® resolved this apparent
paradox by proving that only four of the infinite set of “‘resid-
ual equations” (2.14) are independent: the rest are propor-
tional to the chosen four, which may be conveniently taken
asj=0,1and k =0,1.

The goal of this paper is simply to solve these four alge-
braic equations via perturbation theory.

lil. PERTURBATION THEORY FOR GENERAL SYSTEMS
OF ALGEBRAIC EQUATIONS

Suppose one is given a system of V algebraic equations
in N unknowns which depend upon a small parameter,

i=12,.,N, (3.1)

such that a solution x = (x,?,x,,....xy®) is known for
€ = 0. Aregular perturbatxon expansion in € can be calculat-
ed through the following three steps: (i) expand each F; as a
power series in the N + 1 small variables ([x, —x,”],
[x, — x,@1,...,[xy — x5®];€); (ii) expand each of the un-
knowns (x,,X,,...,Xx) as a power series in ¢, substitute in the
series obtained in the first step and collect powers in €; (iii)
order-by-order in ¢, solve the equations that result from de-
manding that the expansions for each F; obtained in the sec-
ond step are identically equal to 0.
If one writes

Fi(x,x5,.. ,xN;e)— X

X1
x— x.z =xO 4 exV 4 2x@ 4 ..., (3.2)
XN
then
Jx™) = F¥(x9x, . xtV = lhe), (3.3)

where FY) is the column vector whose elements are those
terms at O (") in the power series of F; which depend only
on the lower-order coefficients in the series in the unknowns
(x' and so on) which have already been calculated where J
denotes the usual N X N Jacobian matrix of the functions F;,
evaluated at € = 0. The elements J;; of J are
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JF;

J.= (X(O) 0)

[/ A

(3.4)
j

If the equations F, are polynomials® in the unknowns,
then calculating the right-hand side of (3.3) is merely a mat-
ter of rearranging power series. Since it is always possible to
solve a system of linear equations like (3.3)— a matrix equa-
tion is one of the types that is always solvable—the only
delicate part of the business is calculating the lowest-order
solution x'%, since this may involve solving nonlinear equa-
tions. Fortunately, in the important cases for the double
cnoidal wave, solving the zeroth-order perturbation equa-
tions is easy.

Although routine, the power series rearrangements and
algebra needed to repeatedly compute and then solve (3.3)
quickly becomes laborious as the perturbation order in-
creases. The perturbation series were therefore calculated
using the algebraic manipulation language REDUCE 2, which
can add, multiply, differentiate, and collect terms in polyno-
mials of several variables in symbolic form without requiring
the substitution of numerical values as in FORTRAN. Regular
(as opposed to singular) perturbation theory is ideally suited
to REDUCE 2 and vice versa: The program to compute each
of the perturbation series given in the next two sections had
fewer than 50 executable statements (!) and cost of the final
runs was less than $10.00.

A special advantage of employing an algebraic manipu-
lation language is that different soliton equations in the same
class as the KdV differ only in the function { defined in Sec.
11. Therefore, perturbation series for the Boussinesq water
wave equation and several others can be obtained by rerun-
ning the program after modifying only a couple of state-
ments.

A second advantage is that the computer can substitute
the perturbation series back into the original nonlinear equa-
tions to verify that the solution has indeed been calculated
correctly.

The same algorithm, and very nearly the same comput-
er program, can also be applied to higher polycnoidal waves.
The major difference is that for the triple cnoidal wave, for
example, which is the generalization of three sine waves
(small amplitude) and three solitons (large amplitude), N = 7
instead of 4, and the series are more complicated because of
the greater number of parameters.

IV. SMALL AMPLITUDE (FOURIER SERIES)
PERTURBATION THEORY

As noted earlier, the residual equations that determine
the theta function Fourier series are a special case of the
corresponding more general expressions for the Gaussian
series theory. Making the replacements §,—2wik;, €
— —2m,k;c; and @ = B =y =0, one finds

Pix = z z qﬂ. +(n, —JF qn2 24 (n, - k)?

= — o Np= — @©
[integers]

xXe~ 2T ,[nn, + (1, — My — k)]
Xg (2'”1 —j,2712 - k;kl’kzrcvcz’A )’ (41)

where

John P. Boyd 3404



£ (mmsko,ko,c 004 )=16mk ,m + kyn)* + 4 (kym + k,n)
X (ko ym + kacon) — 24, (4.2)
g;.=e " [“nomes”]. (4.3)

The four equations to be solved are
k=0,1. (4.4)

The input parameters are the wavenumbers (k,,k,) and ei-
ther the diagonal theta matrix elements (T,, 7,,) or the
nomes (¢,,4,). The perturbation series given here are power
seriesin ¢,% and ¢,°. The nomes (or equivalently, T}, and 7',)
determine the amplitudes of the two sine waves that form the
lowest-order approximation, while &, and &, are the wave-
numbers of these two waves.

The four unknowns whose column vector is x are the
two phase speeds (¢,,¢,), the constant of integration 4 for the
HKdV equation (which has no physical significance), and
the exponential of the off-diagonal theta matrix element

Pjxk = 0, j=0,1;

X1 41
X3 A
X e

Novikov’ has stressed that double cnoidal waves may
be almost periodic in space as well as in time. In other words,
the ratio of k,/k, is mathematically arbitrary and may even
be irrational. Therefore, it is useful to first give the general
solution for symbolic k, and k, [to O (¢,*, g,*)] and then the
special k, = 1, k, = 2 solution to O (q,%, ¢,%).

o1 = — k(1 —24g% — 72g,%) + 3849,°k,%/([k(* — K, 1),
(4.6)

€= — k22(1 - 24q22 - 72%4) + 384‘]14k16/([k12 - k22]2)’
(4.7)

A =0+ 12(k*q.% + k,*q,%) + T2k *q,* + kr%q,")
— 768q,%q,%k .k, /([ k2 — k,°1%), (4.8)

e Tr = {[(ky — ko)/(ky + k))17)

+ 32k k,{(ki%g* + k,2¢:0)/ [k, + k,)*1)

+ 32k, k,{k g} — 9%k,* + 16k ,%k,

— 18k 2k,? + 3k, + kg% (3k,* — 18Kk, %k,2

+ 16k, k,* — 9k,%) + 16k,%k,%q,%q,( — 3k,?

+ 2k k, — 3Kk7)} /[y + ko)*(k 2 — kD] (4.9)

The special solution for a wave and its second harmonic
tky=1k,=2)is

o, =47 — 1 4 249> + 72¢,* + (242)g,*
4 96q,° — 32(63 4884,° -+ 69 632,2,%/27
+ 168¢,® + 114 688(3 0644,'q," + 16 704¢,%g,°

+ 6025¢,%)/243}, (4.10)
c; = 16m"{ — 1 +24¢," + 72¢;* + (¥)g,*

+ 96¢,° — 256(¢,° + 184¢,¢,%)/27

+ 1684,% + 64(535¢,® + 104 4484,%,°

+ 658 528¢,°g,*/243}, (4.11)
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A =0+ 167*{129, + 1924,
+ 72g,* + 1 152¢,* — (29%)q,°g,*
+ 1449, + 2304¢,°
+ 204 800(¢,"q,” + 139,°4,")/27
+ 3369,% + 53764,° — 16 384(4954,°¢,>
+ 38 461¢,*g,* + 89 475¢,¢,%)/243},
e~ o= (1) + (§1g," + (30)g.”
— (£)[g,* + 340g,* + 704¢,%,?]
+256[19 972¢,° + 93 168¢,°g,*
+ 19 728¢,%g,? + 374,°1/6 561

- (30 994 432)q14q24

(4.12)

— (15, )(2 8874,% + 8 816 4284,°)

— (46384)(29 029¢,°¢,” + 736 867¢,%¢,°).  (4.13)

Several features of these expansions deserve comment.
First, the numerical coefficients are rather large for high
order, suggesting that the range of accuracy in the ¢, — g,
plane is too small to be useful. To show that this is not true,
contours of constant error for the perturbation series of var-
ious orders are given in Figs. 1 and 2 in Sec.VII.

Second, the expansions proceed in powers of
¢, (= exp[ — 2T,]) and ¢,*( = exp[ — 27},]) rather than
q, and ¢, themselves even though the series for the theta
functions have coefficients that are power series in the un-
squared variables ¢, and g,. This obviously improves the
accuracy and usefulness of the perturbation series.

Third, the perturbation series are sparse not merely be-
cause all the odd powers vanish but because some of the
expected even powers are missing, too. The series for ¢, for
example, has zero coefficients for ¢,%, ¢,°¢,% ¢,*¢.% and
4.°¢,%, i.e., one missing term at each order so that the series
through O (g,%4,% contains only eleven terms. Similar spar-
sity exists for the other quantities.

Fourth, although the series for 4 has been listed for
completeness (one cannot solve for the other unknowns
without simultaneously obtaining 4, too) A4 is only the con-
stant of integration for the Hirota—Korteweg~deVries equa-
tion and has no direct physical significance. It is never neces-
sary to evaluate 4 to compute the double cnoidal wave
solutions of the KdV equation itself.

Fifth and most important, although u(x,? ), the KdV so-
lution, is defined in terms of an infinite series, it is never
necessary to explicitly tabulate the coefficients of the series.
Instead the three dependent parameters T,, ¢;, and ¢, to-
gether with the four free parameters T,,, T,,, k,, and %,
completely determine all the coefficients of the theta Fourier
series (2.6), which in turn determines u(x,t) via (2.1)

Ordinary Stokes’ expansions, obtained via the method
of multiple scales as in Appendix B of Ref. 1, can be calculat-
ed for almost any wave equation, but each Fourier compo-
nent—and their numbers grow as the square of the perturba-
tion order—must be calculated through a separate
expansion as complicated as that for the phase speeds ¢, and

John P. Boyd 3405



¢,- To need only three perturbation series instead of many is
thus a great simplification.

V.LARGE AMPLITUDE (GAUSSIAN SERIES)
PERTURBATION THEORY

For large amplitude, the double cnoidal wave problem
reduces to solving the four simultaneous nonlinear residual
equationsp;, = 0, where the residuals are given by the Gaus-
sian series

o0 o0

Pik = Z z q{n,2+(n,vjbzqén22+(n2—k)2
I

n= — ny= — o

[half-integers] [half-integers]
Xexp( — Ry {nny + (ny —j)ln, — k)})
X§(2n1 —j,2n2 - k;a: ﬂ,7’61)62:51,62, A );

j=01 k=01, (5.1)

where

R (5.2)
Equation (5.1) is very similar in form to its Fourier series
counterpart, (4.1), but there are some noteworthy differ-
ences. As indicated in the square brackets under the summa-
tion symbols, the sums do not run over the integers but rath-
er over the “half-integers” + 1, 43, 4 3,.... The “nomes”
q, and ¢, are replaced by the “complementary nomes” g,
and ¢; which are defined in terms of the elements of the
inverse theta matrix. A factor 2 is present in (5.2) which is
missing from (4.2} and the factor of 2 multiplying T, in (4.1)
has no counterpart in the coefficient of R, in (5.1).

The major difference is in the form of { which is

;(m’n;ayﬂ’7,351’52,61;€2"4 )
= (6;m + 8,n)* + (86,m + S,n)[ (e, — 12a8,)m
+ (6, — 12ab,)n] + 12a*> — 23 — 24, (5.3)

where the parameters are related to the wavenumbers and
phase speeds via

gl=e [“complementary nomes”].

@ =R,k + 2Rk k; + Rysky, (5.4)
B= — Ry k¢, — Rzkksfc, + ¢;) — Rypky’c,, (5.5)
¥ = Ryk,%c,® + 2R 5k kyeic; + Rysky’cd, (5.6)
8, =Ry ki + Rk, (5.7)
8, = Rk, + Rk, (5.8)
€= — Ry ke, — Rpki0, (5.9)
€, = — R k¢, — Ryk,0,. (5.10)

The parameters &, and §, may be named “pseudowave-
numbers” because, as shown in Appendix B, they give the
widths of the two solitary waves in the large amplitude, near-
soliton regime in the same way that the wavenumbers k, and
k, give the widths of the two sine waves in the small ampli-
tude regime. Similarly, €, and €, may be labeled “pseudofre-
quencies” in the sense that ( — €,/8,) and ( — €,/6,) are the
phase speeds of the two solitary waves for large wave ampli-
tude.

The major complication posed by (5.4)—(5.10) is that the
parameters denoted by Greek letters are functions of R,,,
which is one of the unknowns. Thus, it is not possible to
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evaluate any of these parameters a priori; instead, one must
solve for them as part of the task of solving the residual
equations, which would seem to leave us facing an algebraic
problem of ghastly complexity.

Fortunately, the situation is not quite as bad as it looks.
The function § is independent of y, which is automatically
eliminated from u(x,z ) by taking the second logarithmic deri-
vative with respect to x. Thus, although ¥ is needed to graph
the theta function, it is quite irrelevant both to solving the
residual equations and to evaluating the solution of the
Korteweg—de Vries equation, so ¢ will be ignored in the rest
of the discussion.

The parameter S appears in § only as the sum S + 4.
Thus, if B is artificially set equal to O to reduce the number of
unknowns, the solution of the residual equation will be un-
changed except for 4, but 4 has no physical significance.
Therefore, the calculations presented will be done with
3 = 0; after R,, and the other unknowns have been deter-
mined, one can then evaluate £ and add the result to the
computed A to obtain a final solution which is completely
consistent with the original equations (5.1)—(5.10).

The parameter « has a slightly more complex role. One
can easily show from (5.3), (5.9), (5.10), (2.1), and (2.9) that
the results of a calculation in which a is artificially set equal
to O differ from those in which « is retained via

A [witha] =4 (@ = 0) + 6a?, (5.11)
¢,[with a] = c|(a = 0) — 12, (5.12a)
¢, [with a] = c,(a@ = 0) — 12, (5.12b)
ulx,t)[witha]l = — 12a 4+ u{x + 12at,t), (@=0). (5.13)

Since 4 has no physical significance, the important role of a
is to add a constant to u(x,? ) while simultaneously increasing
all the phase speeds of the “angle” variables by the same
constant. As noted in Ref. 2, the theta function solution of
the Korteweg—de Vries equation is that solution which has
(u) =0, where { ) denotes an average over the periodicity
interval. In the near-soliton regime, this is awkward because
it implies that the solitons asymptote to « = — 12« instead
ofto u = 0, which is the usual asymptotic solution as |x|— oo
in the spatially unbounded problem. Setting & = 0 merely
causes the solitons to asymptote to 0.2 Thus, the parameter
is no real trouble either.

Difficulties with the “pseudofrequencies” €, and €, can
be avoided by simply taking them as unknowns in the residu-
al equations. After €,, €,, and R,, have been obtained by
solving the rest of the problems, ¢, and ¢, can be obtained by
solving (5.9) and (5.10) as a pair of linear equations in two
unknowns. Alternatively, one could use (5.9) and (5.10} di-
rectly in £ to replace €, and €, wherever they appeared by
expressions in ¢,, ¢,, and R ;,, which are the usual unknowns
of the residual equations, but this makes the p;, much more
complicated, so it is far less work to consider €, and €, as the
unknowns and then compute ¢, and ¢, at the end.

Unfortunately, there is little one can do with the two
remaining parameters, the “pseudowavenumbers” &, and
5,. The simplest set of algebraic nonlinear equations one can
solve simultaneously is the set of six equations in the un-
knowns (4, R,,, €,, €,, 8, 8,): the four residual equations
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p = 0 plus the pair of equations which define 5, and &,,
(5.7) and (5.8). However, the rather special form of these
equations—(5.7) and (5.8) involve only three of the six un-
knowns—means that it is not necessary to solve all six equa-
tions simultaneously. Instead, one can pretend that 6, and 6,
are independent free parameters and solve the four residual
equations via perturbation theory exactly as for the Fourier
series case in the preceding section. Adding two new param-
eters to the four that already exist (R,,, R,,, k;, k) would
seem to greatly complicate the chore of solving p, = 0, butit
actually does not because &, and k, do not appear explicitly
in the Gaussian form of £ (5.3). Instead, §, and §, appear in
place of the wavenumbers in the analogous terms of {. Thus,
this device of pretending 8, and &, are independent param-
eters leads to solutions of the coupled set p;;, = O which are
neither more nor less complicated than the analogous solu-
tion in the Fourier case for general k, and k,. Just as the
Fourier solution for general k, and k, (as opposed to
k, = 2k,) was taken only up to and including second order
[0(g,* g,"], so also the Gaussian solution of the residual
equations will only be carried to second order also.

The residual equations (implicit dispersion relation) are
defined by infinite series; to calculate the solution to a given
order, it is sufficient to truncate the series of p; after this
same order. The truncated residual series in the Fourier case
was omitted from the previous section because it is given (to
lowest order) in Appendix A, but it is useful to give the series
to second order for at least one of the two cases so that the
reader can see more clearly what must be solved. The series
have been simplified by exploiting the general symmetry re-
lation (true in Fourier case also)

Smun)=¢5(—m, —n) (5.14)
and by dividing out common factors, which is why equal
signs have been replaced by proportionality symbols. In ad-
dition

y=e R (5.15)

has been used to replace appearances of R, so as to make the
series rational in all parameters and unknowns.

Pt (Ll + & (1, — 1) +¢* 1S 3,1 + £ (3, — 1)/x]

+ g} [E (L3 + £ (1, — 3)/x], (5.16)
P10ox$(0,1) + g[S 2,1y + £ (2, — 1)/x] +¢5°6 (0,3),

for all m,n,

(5.17)
Por <5 (1,0) + g2 [ (1L,2)y + & (1, — 2)/x1 + ¢1* (3,0),
(5.18)
P11 (0,0)+ 2[¢1°6(2,0) + ¢5%¢ (0,2)]
+ 297457 [ (2,207 + £ (2, — 2)/¢°]. (5.19)

These rather innocent-looking expressions, (5.16)~(5.19), be-
come exceedingly messy when £ (m,n) is evaluated according
to(5.3), so they were solved perturbatively using the algebra-
ic manipulation language REDUCE 2 to perform (and check!)
the algebra. Note that these series, like their solutions and
the Fourier perturbation series given in Sec. IV, are
“sparse”: many expected terms in the series are identically
equal to 0. Equation (5.16), for example, contains no first-
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order terms at all, and only five of the possible 12 second-
order terms appear in the set.

The corresponding solutions are given below. Note that
the parameters @ and S have been inserted in the proper
places so that the results are fully consistent with (5.3)

€, = 6,(12a — 8,2 + 24425,
+ 245, [ 3414526, — 26,%8,% + 6,°)
+ 16¢5%6,°1/1(8,> — 8,11,
€, = 8,(12a — 8,) + 249375, + 245,[ 164;*5,°

+ 3‘134(526 - 2512524 + 514522)]/[(522 - 612)2],
(5.21)

(5.20)

A=6a*— B+ 12¢7%6,* + 12¢3%6,*
+ 24[3¢7%6,*6,* — 26,°6," + 8,%)
— 3291%¢;%5,6," + 3¢;%(6,° — 26,%6,°
+8:*8,Y1/1(6,° — 8,1,
e =6, - 8,)/(6, + &,
+ 325,8,(¢16,° + ¢5°6,°)/(6, + 6,)°
+ 325,8,[(g7%38,%8," — 185,*5,*
+ 168,°6, — 96,°) — 912952(48612524
— 328,%8,> + 486,*8,%) + q54 — 96,°
+ 168,8,° — 185,%5,* + 36,6,%)1/
[(61 + 82)°(8; — 8,11 (5.23)
As explained before, §, and 8, are not really indepen-
dent parameters but rather are determined by R,, and R,,
(or equivalently, by ¢g; and g;) through (5.7} and (5.8). It is
therefore necessary to solve the triplet system of (5.23) plus
(5.7) and (5.8) for the three unknowns (8,, 8,, R,,) to obtain a
completely consistent solution. However, in the large ampli-

tude regime, 6, and &, have a physical interpretation as giv-
ing the widths and speeds of the two solitons,

u(x,t)=38,% sech®[(8,/2)(x — 8,%t + ¢,)]
+ 38,2 sech?[(8,/2)x — 8.7t + é5)],  (5.24)

where ¢, and ¢, are phase constants at those times when the
two solitons are well separated. In the large amplitude re-
gime, R, <R,;, R,, so that one has approximately

R; = 5i/ki’ i=1.2 {5.25)

Under these circumstances, it may be preferable to take the
pseudowavenumbers 8, and &, as independent parameters,
estimate R, and R,, and therefore, ¢{ and ¢} via (5.25) and
(5.2), and then use (5.20) to (5.23) directly to estimate the
importance of the corrections due to spatial periodicity to
the lowest-order solution, which is just the spatially un-
bounded double soliton.’

Unfortunately, this crude estimation is all that can be
done directly because the lowest-order problem for (5.7),
(5.8), and (5.23), which is

(5.22)

e~ R = (8, — 8,)/(6, + 82), (5.26)
5, =kR,, + k,R,,, (5.7 bis)
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8, = k,Ry; + k>R, (5.8 bis)

has no closed form solution. It is easy to solve this set nu-
merically, however.

To proceed to higher order, it is convenient to replace §,
and 6, by

S=65,+6,, (5.27)

D=6, -6, (5.28)
There are two motives for this trick. One is the §, and §,
often appear in (5.23) as their sum or difference rather than
alone. A second reason is that for the special case of k, = k,
(the principal branch or mode of the double cnoidal wave as
explained in Ref. 2) the difference variable D is given exactly
by the lowest-order solution. In terms of the new variables,
the problem becomes (5.23) plus

S=kRy, + kR, + (ky + k)R 5, (5.29)
5 = klRll - szzz + (kz - kl)RIZ' (5-30)

The general solution to first order for arbitrary k, and
k,is

S=8— ¥k, +k,), (5.31)
D=D—¥(k,— k), (5.32)
e Re=y(1+ W), (5.33)
where S, D, and y are the solutions of the lowest-order set
S=kRy + kRp, — (ki + k))ln(y ), (5.34)
D= kR, — koRy, + (ky — ko)in(y ), (5.35)
y=D?S?, (5.36)

[which is equivalent to (5.26) plus (5.7) and (5.8)] and where

¥=2S+DNS—D)[g;S+ D) +¢(S— D))/
{xS*—SD*[k\(S+ D) — k,(S—D)]/2}. (5.37)
The second-order solution for the special case

ki=k,=1is

D=D,

S=8—_2W4{—-32D*W(g*+q}}
+48D3S¥ (q;” — qi%) + 16DS°¥ (g* — ¢3)

+ WA24D2S — ¥S°%) + 250} /(S?[4D? — ¥S*]),
(5.38b)

(5.38a)

e Re=y(1 4+ W)+ (16D*W¥(g}* + ¢))
+24D°SW (qi* — g5°) + 8DS W (g5 — ¢7°)

+2D*S¥S — 6) — S°v}/(S2[4D? — ¥S°]),
(5.39)

where as before S, D, and y are the lowest-order solutions for

(61 + 8,), (6, — 8,), and exp ( — R,,), ¥is given by (5.37) and

v={ —q*[§*+ 253D+ 10SD> + 5D*](S+ D (S — D)
— 847%¢5’[S* +2D*)(S+ DS - D)
~q*[S*—2S8°D —108D?
+5D%)S—DPS+ D)}/ (D3SO). (5.40)

It goes almost without saying that the Gaussian pertur-
bation theory is more cumbersome than its Fourier counter-
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part at the same; particularly annoying is the necessity of
solving the lowest-order set (5.26) plus (5.7)—(5.8) numerical-
ly, even though a simple Newton’s iteration initialized with
R, = Oalways seems to work. However, the Gaussian series
is that oddity: a perturbation series that converges more and
more rapidly as the wave amplitudes becomes larger, so it is
an essential component of any complete treatment of polyc-
noidal waves.

V1. PERTURBED SINGLE-SOLITON REGIMES

The perturbation series derived in the previous two sec-
tions were based on the implicit assumption that both diag-
onal theta matrix elements T, and T,, are either very large
{(Fourier series) or very small (Gaussian series). When one
diagonal theta matrix element is very large and the other is
very small, however, neither the Fourier series nor the Gaus-
sian series for the theta function converges rapidly as is ob-
vious from inspecting the form of these series.

In Ref. 1, it is shown through numerical examples that
these regimes correspond to a single solitary wave slightly
perturbed by a small amplitude sine wave, so these parame-
tric neighborhoods are much less interesting than those in
which the waves have amplitudes of the same order of mag-
nitude and one or the other of the series given in the previous
sections is rapidly convergent. When (k, = 1 and k, = 2)

T\ <&m, (6.1)

the solitary wave is of unit period with a height and width
determined solely by the magnitude of 7',,, and the perturba-
tion is of wavenumber 2, i.e., periodic with a period of 1, with
a small amplitude roughly equal to 4 exp( — T,,). After the
application of a modular transformation® to k, =k, = 1,
this same regime is found to be characterized by either

R22>77"

T,,>,

R, <2, (6.2)

or equivalently (since the wavenumbers after the modular
transformation are identical) by (6.2) with the direction of
the inequalities reversed.

The other perturbed-one-soliton regime occurs when

T\ »m, Tp<m. (6.3)

The large amplitude component is now of wavenumber 2, so
that tall, narrow solitary wave is repeated with half unit peri-
od while the small amplitude perturbation is a subharmonic
of period one. When the modular transformation is applied
to convert to a representation with equal wavenumbers,
k, = k, = 1, one finds that the equivalent neighborhood in
terms of the inverse theta matrix elements lies around the
diagonal in the R, — R, plane,

Ry =~R,. (6.4)
The reason for this somewhat surprising result is that the
wavenumbers are equal in the R, — R, plane and therefore
the roles of the two diagonal inverse theta matrix elements
are physically interchangeable and the phase speeds, etc.,
must be symmetric functions of R,; and R,,. This implies
that the whole of the T,, — T, plane must map into the
wedge-shaped half of the R,, — R,, plane which lies below
the diagonal (6.4).

The Poisson summation method which was used to
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generate the Gaussian series from the theta Fourier series
can be applied selectively to just one of the sum variables,
either n; or n,, in the infinite series that define the residual
function p; (4.1). This is not the most efficient way to pro-
ceed because it causes “theta matrix-halving” as explained
on p. 384 of Ref. 1, but it shows that in principle, Poisson
summation can be applied to generate rapidly converging
residual function series (and perturbation series derived
from them) in any region of parameter space for polycnoidal
waves of any genus V.

A procedure that gives more rapidly converging series
is to apply partial Poisson summation directly to the multidi-
mensional theta function and substitute the result into the
Hirota—Korteweg—de Vries equation. Shirfuji'® actually ap-
plied this idea to the double cnoidal wave of the Toda lattice
problem in 1976, but the independent derivation of the resid-
ual equations by Nakamura and Boyd lay in the future, and
such results as he obtained came directly from the governing
equations of the Toda lattice, and not from Hirota’s trans-
formed Toda equation. The theta function can be written as

0 = 6,X) + e~ 2{0,[X — (i/m)T),]e&™Y

+ 0,[X + (i/m)Ty,1e —*"7}, (6.5)

when T, €T,,, where 8,(X ) is the usual one-dimensional the-
ta function. Representing 6, by its Gaussian series represen-
tation [note that (6.5) contains the lowest terms of the Four-
ier series in the other angle variable Y with higher terms
eliminated because of the extreme smallness of exp( — 7,,)]
one can substitute (6.5) into the Hirota—K orteweg—de Vries
equation and then use the calculus of Hirota operators devel-
oped in Ref. 1 to obtain infinite series for the residual equa-
tions.

Unfortunately, the resulting zeroth-order approxima-
tion is a quartic equation in exp( — 7,) and cannot be solved
in closed form, unlike its counterpart for the pure Fourier
series representation given in Sec. IV. It follows that one is
forced to resort to numerical methods even to compute the
zeroth-order solution, so this kind of special treatment for
the perturbed-one-soliton regimes is not very useful. In the
first place, the double cnoidal wave is much more interesting
when it is truly a double soliton or a double sine wave than
when it is merely a perturbed ordinary cnoidal wave. In the
second place, numerical solution of the “pure” Fourier or
Gaussian residual equations (4.1) and (4.2) is quick and effi-
cient unless the difference between the magnitudes of the
diagonal theta matrix elements is very large, but in that case,
the perturbation of the single soliton is very, very small, and
therefore uninteresting.

For this reason, no further details will be given about
partial Poisson summation of Shirafuji’s approximation. For
most purposes, the perturbation series derived in the preced-
ing two sections are quite adequate. For the perturbed soli-
tary wave discussed in this section, alternative perturbative
methods, like that of Grimshaw,'! might be more physical
and easier than trying to work through the residual equa-
tions.

Wahlquist'? and Kuznetsov and Mikhailov'? report so-
lutions obtained via Backlund transformations and the in-
verse scattering transform. Zagrodzinski and Jaworski'* ap-
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ply ideas similar to Shirafuji’s to obtain what they dub
“mixed” solutions, i.e., solitons perturbed by sine waves, for
the sine-Gordon equation for general N.

Vil. ACCURACY OF THE PERTURBATION SERIES

In Ref. 1, it is shown that the complementary perturba-
tion series, one which gives the first few terms of the Fourier
series of the theta function and the other which gives the
Gaussian series, were very accurate for the ordinary cnoidal
wave provided that each series was used in the proper regime
(small wave amplitude for the Fourier series and large ampli-
tude for the Gaussian series). In the worst case, i.e., that
intermediate wave amplitude for which both series converge
equally well or poorly, both gave the phase speed to within a
relative error of 4.7% to zeroth order, and to within 0.027%
to first order, where “zeroth” order refers to the phase speed
of a linear sine wave in the Fourier case and a solitary wave
on an infinite spatial interval in the Gaussian case.

For the double cnoidal wave, the overlap between the
two complementary perturbation series is not quite so dra-
matic, but it is still good. Figures 1 and 2 compare regions in
which the zeroth-order and first-order perturbation series
give errors which are less than 10%. The error criterion is to
take the largest of the three errors for c,, ¢,, and either T, or
R, as appropriate using the modified relative error criterion

Error = (¢, — ¢,**"/c, (7.1)

where

»
1
T

T

I\ 5

= T T T T f
2

4 6 8 10 12 14
RH

FIG. 1. The lines slanting from top right to bottom left denote that region in
the R, — R,, plane where the error in all three of the quantities c,, ¢, and
R, which suffice to determine the theta function and the corresponding
solution of the Korteweg—de Vries equation, is less than 109% for zeroth-
order Gaussian perturbation theory, which is the double solitary wave ap-
proximation. The modified relative error is defined by Egs. (7.1) and (7.2).
The lines slanting from top left to bottom right are the 10% error region for
the zeroth-order Fourier perturbation theory, which is equivalent to ap-
proximating the double cnoidal wave as the sum of two linear sine waves.
The blank area is “no-man’s land” where neither approximation is accurate
within 10%.
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FIG. 2. Same as Fig. 1 except for the first-order Fourier and Gaussian ap-
proximations, which incorporate the first correction to the double solitary
wave and double sine wave. The first-order theories overlap very well.

4]

linear sine wave __

¢ = larger of [ (7.2)

— 394,

and similarly for ¢, and the off-diagonal theta matrix ele-
ment. The reason for the modification, i.e., the replacement
of the exact variable by its value in the linear limit, is that
both phase speeds vanish along certain curves in the two-
dimensional parameter space spanned by R, and R,,, which
implies infinite unmodified relative errors in the neighbor-
hood of these curves even though the absolute errors may be
very small.

Figures 1 and 2 show the principal branch of the double
cnoidal wave with k; = k, = 1. Because the wavenumbers
are identical, the graph is symmetric about the diagonal
R, = R,,. The neighborhood of this diagonal corresponds
to a perturbed ordinary cnoidal wave of unit period. As ex-
plained in the preceding section, neither perturbation series
can be expected to work well in these neighborhoods because
both that derived in Sec. IV and the Gaussian series of Sec. V
implicitly assume that the amplitudes of both waves are ei-
ther very small or very large. However, the graphs show that
the near-diagonal and near-axis regions where the Gaussian
and Fourier perturbation series fail are quite narrow—al-
most invisible on the scale of the graph. This is a strong
pragmatic justification for omitting a detailed treatment of
the mixed Gaussian—Fourier perturbation series which, as
noted in Sec. VI, can be calculated, but which would hardly
ever be of any practical value.

Even outside these narrow perturbed-single-soliton
areas, the zeroth-order perturbation curves do not quite
overlap; there is a small region of moderate R,, and R,,
where neither approximation gives all three dependent var-
iables to within 109%. However including the first-order cor-
rections to the sum of the two noninteracting linear sine
waves and to the double solitary wave reduces the error to
less than 109% everywhere except very close to the diagonals
and the axes.

The physical implication is clear: The double cnoidal
wave of the Korteweg—de Vries equation can always be con-
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sidered both qualitatively and quantitatively to be either (i)
the sum of two noninteracting sine waves; (ii) a pair of soli-
tary waves of different heights, repeated with unit period
over all x; or {iii) a single soliton plus a weak sinusoidal per-
turbation. When one wants to obtain numerical values for
the double cnoidal wave, the perturbation series derived ear-
lier will usually be adequate. If high accuracy is needed, it is
straightforward to solve the residual equations numerically
using the peturbation series to initialize the iteration.

The one serious complication is that the Fourier and
Gausstan perturbation series involve different parameters—
the Fourier expansion uses 77, and 77, while Gaussian em-
ploys R, and R,,—and it is not possible to transform from
one pair of parameters to the other unless one knows either
T,, and R,. In practical terms, this means that if one wants
to make a contour plot of the phase speed ¢, as a function of
T,, and T,, including such small values of these diagonal
theta matrix elements that one passes into the double-soliton
regime, one must use an iteration instead of a direct evalua-
tion. One must guess 77, (in the large amplitude, double-
soliton regime, one cannot calculate it from the Fourier per-
turbation series), perform a modular transformation as in
Ref. 3 to obtain the three inverse theta matrix elements, ap-
ply the Gaussian perturbation series, determine the differ-
ence between the R, obtained by the modular transforma-
tion and that calculated by the Gaussian perturbation series,
transform back to 7,,-T,, space, and guess a new value for
T\, and so on. The fact that the off-diagonal theta matrix
elements are unknowns rather than independent parameters
is a considerable practical difficulty.

Fortunately, it is one that arises only when one is at-
tempting to simultaneously explore the dynamics of double
cnoidal waves in both the large and small amplitude regimes.
If one is content instead to examine the double cnoidal wave
strictly as the sum of two solitary waves, then one can stick to
the inverse theta matrix elements R,, and R, as parameters
and use the Gaussian perturbation series alone. If one wants
to investigate polycnoidal waves as a sum of quasilinear
waves, the Fourier perturbation series is more than ade-
quate.

Vill. SUMMARY

Following the plan outlined in Ref. 1, the problem of
the double cnoidal wave for the Korteweg—de Vries equation
has been reduced to four algebraic equations in four unk-
nowns. Because the four functions of this set are defined only
via infinite series, it is extremely advantageous to express
these four residual functions in two quite different ways: one
obtained by using the ordinary Fourier series of the theta
function and then applying the theorems of Ref. 1, and a
second representation derived via the alternative Gaussian
series. These representations are mutually complementary
in the sense that the Fourier representation, obtained inde-
pendently by Nakamura,* is very efficient for small ampli-
tude double cnoidal waves while the Gaussian representa-
tion, obtained here for the first time, is highly effective for
large amplitude, i.e., when the double cnoidal wave is ap-
proximately equal to two solitary waves of unequal heights
repeated periodically over all space.
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It is also straightforward to solve the residual equations
using perturbation theory. Comparisons with numerical so-
lutions show that even the zeroth-order perturbation series
have good overlap while the two first-order series cover al-
most all of parameter space with errors of 10% or less. By
using the algebraic manipulation language REDUCE 2, it is
trivial to extend the series to fairly high order for the princi-
pal branch of the double cnoidal wave (fourth order for the
Fourier case and second order for the Gaussian series) so as
to cover all the physically interesting regimes in parameter
space.

The methods employed here, which explicitly use the
properties of the Riemann theta function, are only applica-
ble to partial differential equations which are exactly inte-
grable by the periodic analog of the inverse scattering meth-
od, which is known as the “Hill’s spectrum” procedure.
Within this class, however, the ideas developed here extend
very readily to other equations. For the Boussinesq water
wave equation, for example, the calculations presented here
can be repeated merely by altering the residual equations
(and the appropriate line in the REDUCE 2 computer pro-
gram) to use a new function & (m,n), where & (m,n) is defined
(for the Korteweg—de Vries equation) by (2.11).

The Gaussian perturbation series is remarkable in that
it converges most rapidly when the wave amplitude is large
rather than small, which makes it well suited for exploring
the effects of spatial periodicity on solitary waves. The Four-
ier perturbation series is useful, too, because its form is
simpler and easier to evaluate than the Gaussian series and it
remains accurate even for moderately large waves. Both se-
ries share the common property that it is not necessary to
write down separate series for each of an infinite number of
Fourier coefficients or the like: one need only have series for
three parameters, and these determine the whole infinite se-
ries for the theta function, and thus for the double cnoidal

wave itself.
Future work to calculate perturbation series for other

partial differential equations integrable via the “Hill’s spec-
trum” method is now in progress. It is hoped that the results
will be useful whenever equations of soliton type are applied
with spatially periodic boundary conditions, or wherever
there is a high density of solitons so that soliton—soliton over-
lap is important.
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APPENDIX A: PERTURBATION THEORY IN AN
UNPHYSICAL REPRESENTATION

The companion paper (Ref. 3) has shown that via the
“special” modular transformation, a given theta function
can be expressed in a denumerably infinite number of ways.
Each of these allowed representations involves theta func-
tions of two “angle” variables, X =k (x —c,t) and
Y = k,(x — ¢,t), but in general the phase speeds ¢, and c,
have no actual physical interpretation unless the representa-
tion is that unique one defined to be the “physical” represen-
tation in Ref. 3. Fortunately, the perturbation series given
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earlier automatically calculate in this “physical” representa-
tion so that ¢, and ¢, are the actual speeds at which individ-
val peaks of the polycnoidal wave are moving.

Nonetheless, it is still of interest to see how perturbation
theory can cope with the problem of calculating in an “un-
physical” representation because this both provides an addi-
tional demonstration of the existence of an infinite number
of alternative representations of the theta function and also
illuminates the assumptions and details of the perturbation
method. For simplicity, attention will be limited to the low-
est-order Fourier case for a polycnoidal wave consisting of a
sine wave of unit period and its second harmonic (plus very
small high harmonics created by their interaction which will
not be explicitly calculated).

Assuming that

Ty, Ty»l (A1)

the four residual equations are, to lowest order with com-
mon factors omitted,

Poo = §(0,0) (A2)
P10 =¢(L0), (A3)
Por=§(0,1) +e T 210 (2,1), (A4)
pun=e T (L) +£(1, — 1), (AS5)

where the zeta function for the Korteweg—de Vries equation
is defined by

& (mun)=16mk m + k,n)*
+ 4 (kym + kyn)(k,cym + kycon) — 24.
(A6)

[The zeta function satisfies the general symmetry relation
5 (mn) = £ (— m, — n) as evident in (A6), and this has been
used to simplify (A3) through (AS5).]

In the physical representation for which £, =1 and
k, =2, (A2) and (A 3) may be solved to give

;= —47 + 0fe e 2T, (A7)

A=0+4 0 Tne 2T, (A8)
If one assumes

| T2l €11, T (A9)

as done implicitly in earlier sections, then the second term in
Por Must be neglected to give

= — 167+ 0 Tne ), (A10)

Equation (A9) is the key assumption that ensures that we
calculate in the physical representation. The phase speed c,
is indeed that of a second harmonic of the linearized
Korteweg—de Vries equation. The residual p,, = 0 gives

T\, = log(3) = 1.0986. (A1l)

It is, however, equally possible to calculate in the un-
physical representation k, = k, = 1. As stressed in the auth-
or’s companion paper on the modular transformation,® the
linear dispersion relation gives a unique phase speed for each
wavenumber, so it is quite absurd to suppose that the two
waves of different phase speeds which are the dominant
terms in the Fourier series of a small amplitude double cnoi-
dal wave can both have identical wavenumbers. (If wave-

John P. Boyd 3411



numbers and phase speeds are the same, then the two waves
are identical and we have an ordinary cnoidal wave which
depends on but a single “angle” variable.) Nonetheless, it is
still possible to represent the solution using a theta function
with the unphysical wavenumber &, = 1 if {A9) is replaced
by

Ty,= —Ty,+A4. (A12)

The first two residuals are unaffected (to lowest order!)
by the change in &, and by (A12), so the phase speed ¢, and
constant of integration are still given by (A7) and (A8). The
invariance of ¢, is in fact true to all orders in perturbation
theory because a modular transformation that alters &, and
Y does not affect X and ¢, at all as may be seen in Table I of
Ref. 3. The invariance of A4 is also exact because the special
modular transformation leaves the theta function un-
changed, which means that after the angle variables have
been converted to x and ¢, the theta function has the same
dependence on space and time as before. The theta function
must therefore satisfy the Hirota-Korteweg—de Vries equa-
tion with the same constant of integration 4.

The other two residual equations, however, are quite
drastically changed. When the wavenumbers are identical
and A4 =0,

¢(L1)=0 (A13)
so that
pun=e T (L1). (A14)

The only way that p,, = O s if either (i) 7, = o, which is
impossible since the theta series would diverge or (ii)

(LY)=0 (A15)
which demands
c, = — 287 (A16)

This is not the phase of any linear wave of the Korteweg—de
Vries equation with an integer wavenumber.

Because of the large magnitude ot 7., it is no longer
legitimate to neglect the second term in p,,;, which becomes
[using (A 12)]

Por =§(0,1) +e L (2,1), (A17)
which gives
T,,= —T,, + 1.0986. (A18)

These alterations in ¢, and T, [from the values given in
(A 10} and (A 11)] are exactly as listed in Table I of the com-
panion paper by Boyd for a transformation by the modular
generator A, '. Equation (A 16) is the limit of the numerical-
ly calculated values of ¢, as given in Table II of the same
paper, while (A 10) gives the limit of what is called ¢,™? in
the same table. Thus, there is a gratifying consistency
between the numerical solutions of the residual equation, the
perturbation theory, and the special modular transforma-
tion.

The lowest three terms of the theta function itself can be
written in either representation,

0
2] [0] =14+e Tncos(2nX) 4+ e~ "= cos(27Y)

+ e~ Tn=Tu—2Tu o2 [X + Y ). (A19)
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In the “physical” representation [1,2], ie., k, =1 but
k, =2, the first two cosine terms are dominant in the limit of
Ty1, Tp;» 1. In the “unphysical” representation [1,1], i.e.,
k, =k, =1, (A18) implies

=T =Ty —2T; _ ,— T“eT“ — 2.2972>e- Ty (AZO)

for large T, so that the cos(27Y ) term is exponentially small
in comparison to the “mixed” terms cos(27[X + Y']). This is
asit should be because cos(27[X + Y'])is of wavenumber 2 in
x and is in fact identical with the term which is written
cos (27Y) in the other representation.

4 e

APPENDIX B: THE RELATIONSHIP BETWEEN THE
“TETRA-GAUSSIAN” DOUBLE SOLITON AND
HIROTA’S DOUBLE SOLITON

Asnoted in the main body of this paper and the author’s
previous work," the sum of the four Gaussians with peaks at
the corners of the unit square, named the “tetra-Gaussian”
and labeled by an upper case Greek O, can be given two
interpretations. First, it is the lowest-order approximation to
the full theta function series 6 (X,Y). Second, it is an exact
solution of the Hirota—Korteweg—de Vries equation for the
spatially unbounded problem, representing two solitary
waves of unequal height. This second interpretation is im-
portant because it justifies interpreting the double cnoidal
wave as a double soliton when the wave amplitudes are large
enough so that the tetra-Gaussian is an accurate approxima-
tion.

It therefore, is useful to explain how the tetra-Gaussian,
which seemingly is very different, is physically equivalent to
Hirota’s own solution to the HKdV equation, which is

H(x,t): 1 +er—31x+5,‘t7¢, +e—33x+32‘t~¢:

85 —6,\2
yous
6, +6,

Xexp( — (31 + Sz)x + (513 + 523)t — ¢ — ).

(B1)
The tetra-Gaussian in contrast is
O x,t)= exp( — {(R,,/2)(X 4 n,)
n= +1/2n= 1172
+ R (X + n )Y + ny) + (Ry/2)/(Y + ny)*})
(B2)

or written in terms of x and ¢
O (x,t) = exp( — (@/2)x* — Bxt — (y/2)t*
— (R11/8) — (R5,/8))
Xy > exp(— {(6iny + 8uny + 6, )x
n=11/2n,= +1/2
+ (647, + 6,1, + 6p)t 1)
X exp( — {RIannZ + Py + Pon, + ¢p}) (B3)

where the Greek letters are related to the theta matrix ele-
ments and k,, k, etc., via (2.8) through (2.19). Thus, Hirota’s
solution is an unsymmetrical sum of four exponentials of
linear arguments and is spatially unbounded, whereas the
tetra-Gaussian is a symmetrical sum of four exponentials of
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quadratic arguments. Because of (i) the form of the function
£ (4, J) which appears in the residual equation (2.22), (2.23),
and (2.26); and (ii) the second logarithmic derivative trans-
formation, these differences are almost entirely cosmetic if
one matches the psendowavenumbers, i.e.,

5,=8, 6,=6, (B4)

It was stressed in the author’s previous work' that the
reason one can prove that all but four of the residual equa-
tions p, = O are redundant is because £ (7, j) depends only on
differences in the exponentials of a pair of terms in the theta
function whose interaction in the bilinear HKdV equation is
described by £ (i, j). This implies that if H (x,t ) is a solution of
the HKdV equation, then exp [vx + ot + = ] H (x,t ) is also
a solution for arbitrary constants v, o, and =. This theorem
was widely used by Hirota himself a decade ago to manipu-
late his solutions into convenient form. Here, recalling that
the explicit, exact solution of the residual equations for the
tetra-Gaussian (which is also the lowest-order approximate
solution for the full -series) implies that €, = §,* — 12a4,,
€, =08, —12a8,, and exp[ — R,,] = (6, — 8,)/(6, + 8,)%
one can verify through routine multiplication that
exp[vx + wt + 5 ] H (x,¢ ) matches O (x, ) except for the de-
pendence of the latter on a, 3, and y provided that

vV = 5(61 + 62), (BS)
o =Y8," + 6%, (B6)
E= ~Ri/8—Ry/8+ B, —$/2— $:/2 — Ryo/4,

(B7)

and that one adjusts the phase factors ¢, and ¢, in the angle
variables X and Y, which determine @, and @, in (B2) via
@, =R 14, + R;$, and @, = R4, + Ry, s0 that

D, =¢,+ Ry/2, (B8)
D, = ¢, + Ryy/2. (B9)

The two phase factors in X and Y are neither more nor less
than what is needed to match the two phase factors in H (x,¢)
and vice versa.

Since {(i,j} is independent of y, it follows that
expl — (y/2)t*]1H (x,t)isasolutionif H (x,t ) is. The function
& (i, j) does depend on 5, but only in the combination of
3 — A.Thus, if H (x,t )solves the HKdV equation with 4 = 0,
then exp[ — Bxt |H {(x,t) is a solution of the HKdV equation
with the new constant of integration 4 = . This same rea-
soning explains why Fourier series numerical integration of
the HKdV equation instead of the KdV equation, which is
otherwise tempting because the Fourier series of the theta
function converges much more rapidly than that for the mer-
morphic function which is the corresponding solution of the
KdV equation, will not work unless 4 is known in advance:
There is only a single value of 4 which the HKdV equation
has a periodic solution. Arbitrary choices of 4 will yield so-
lutions that are the products of a periodic function with exp-
[ — (const)xt ]. This is strictly a numerical difficulty, how-
ever; neither S nor A has any effect on the solution of the
Korteweg—de Vries equation because the exp[ — fxz ] factor
is automatically eliminated when the second logarithmic
derivative is taken.

The factor of exp[ — (@/2)x*] does alter u(x,t ), but only
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by the addition of a constant and simultaneously a shift in all
the phase speeds by the same constant. Stated formally, one
can easily show from the form of £ {i, j) (or from the theorem
givenin Sec. VII of the author’s previous work} that if H (x,¢)
is a solution of the HKdV equation with «(x,f ] = 12(In H},,
as the corresponding KdV solution, then exp[— (a/
2)x*)H (x + 12at,t) is also an HKdV solution with the new
constant of integration 4 ' = A — 6a* with

vix,t) = — 12a + ulx + 12at,t) (B10)

as the corresponding solution of the Korteweg—de Vries
equation. Thus, aside from the « dependence in (B10), the
tetra-Gaussian is physically equivalent to Hirota’s double-
soliton HKdV solution, even though their mathematical
form is rather different.

APPENDIX C: THE “TETRA-GAUSSIAN” AND THE
GEOMETRY OF THE X-Y PLANE

For large R,,, R,,, one can accurately approximate the
full theta function series by a tetra-Gaussian and deduce a
number of simple facts that have been exploited here and in
Ref. 2. First, note that, using © to denote the tetra-Gaussian
as in Appendix B,

172 1/2

+ R X+ n )Y+ n,)+ (%)(Y—%— nz)zb], (C1)

which by extracting the common factor is
= - (R11/2)X2 + R XY + (R22/2)Y2

172 172
+Inl > exp( — R, Xn, — R, Yn,
n=—1/2n="=172
— R;Xn, — R, Yn))]. (C2)

When we take the second derivative of In 6, the quadratic
termsin X 2, XY, and Y ? are converted to a constant (— 12a),
so the shape of the double soliton is determined entirely by
the remaining logarithm in (C2), i.e.,

172 1/2

L=In exp( — R, Xn, — R,,Yn,

n= 12 = 172
— R,Xn, — R\,¥n))].
(C3)

As done in Appendix B, one can then show that the sum of
the four exponentials with linear arguments in (C2) is equiva-
lent to Hirota’s sum of four linear exponentials that generate
the double solitary wave in the spatially unbounded prob-
lem.

Here, a different strategy will be adopted. When R,
and R, are very large, the “tetra-Gaussian” has four narrow
peaks at each of four corners of the unit square X = + L,
Y = + 1. Over most of the square, O is dominated by a sin-
gle term. The logarithm of a single exponential of linear ar-
gument in (C2) can be evaluated explicitly to give a result
linear in X and Y, which is then eliminated by taking two
derivatives. Thus, solitons occur only where at least two
peaks of the tetra-Gaussian are of comparable magnitude.
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One such region is the neighborhood of the positive ¥

axis where the important peaks aren, = + 14,7, = — }and
L=In[2cosh(R;X/2+ R,Y/2 — R,/4)]
+ R Y/2+ R X /2. (C4)

The valley in the graph of @ [which corresponds to a ridge of
the function U (X,Y) graphed in Figs. 7, 8, and 10 of Ref. 2]
occurs along the line where the argument of the hyperbolic
cosine is 0, i.e.,

R,Y= —R, X+ R,,/2 (C5)

Repeating the argument along the negative Y axis gives (C5)
again except for a sign change for the Y-intercept, R,,/2.
Thus, one finds, as quoted in Sec. VI of Ref. 2, that the slopes
of the soliton valleys are ( — R,,/R,,) and by similar reason-
ing, ( — R/Ry,).

Using the definitions 8, =Rk, + Rk,
X=k,(x —c,t),etc.,asin (5.7) and (2.4) above, one can write

L =In{cosh[(6,/2)X + (€,/2)t — R,,/4]) + [*], {C6)
where the [ *] denotes terms that will be eliminated by differ-
entiation. Then

d 2
u(x,t )EI2E L
= 38,% sech?[(5,/2){x + (,/8,)t — R,,/(26,)} 1.
(C7)

Thus, the soliton whose width and amplitude are determined
by the diagonal inverse theta matrix element R,; corre-
spondstoatrough in the graph of @ (X, Y} which runs roughly
parallel to the Y axis. Repeating the analysis for negative ¥
gives (C7) again except for a change of sign in R ,. Now, the
region around the origin is where the two soliton troughs
turn and merge. The jump represented by the sign change in
R, is therefore the collisional phase shift, which is then

phase shift = R,,/8,. (C8)

The tilting of the soliton troughs so that they only ap-
proximately parallel the X and Y axes is intimately related to
this collisional phase shift. Since the full theta series is domi-
nated within the unit square entirely by the four peaks of the
tetra-Gaussian, it follows that the soliton valleys must inter-
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cept the edges of the unit square at the same value of X (Y') for
the trough paralleling the Y(X) axis, to within
O (exp[ — R,,/2], exp[ — R,,/2]), or the theta function
will not be periodic. Were it not for the phase shift, the
troughs could preserve periodicity simply by running paral-
lel to the axes. Asitis, the tilt insures that the troughs, whose
equations are

R, Y= —RX+R,»/2, (+)¥Y>0, (—)Y<0,

(C9)

both intersect the edges of the unit square, ¥ = + 1, at
X = 0. Asexplained in Sec. VI of Ref. 2, this tilting of trough
lines also implies that the phase velocities are not the speeds
of the “free” solitary waves, i.e., the rate at which the soli-
tons travel when not enmeshed in a collision; ¢, and ¢, are
rather the time-averaged velocities of the peaks of u(x,t).
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The modular transformation of the Riemann theta function is used to show that the implicit
dispersion relation for the N-polycnoidal waves of the Korteweg—de Vries equation has a
countable infinity of branches for N>2. Although the transformation also implies that each
branch or mode can be written in a countable infinity of ways, it is also shown that there is a unique
“physical” representation for each mode such that the parameters of the theta function can be
interpreted as wavenumbers and amplitudes in the limit of either very small or very large
amplitude. Unfortunately, the small amplitude “physical” representation is different (by a
modular transformation) from the large amplitude “physical” representation for a given mode,
but this difference explains an apparent paradox as described in the text. The general modular
transformation expresses the theta function in terms of complex wavenumbers, phase speeds, and
coordinates that have no physical relevance to the Korteweg—de Vries equation, but it is shown
that for N>>2, there is a subgroup, here dubbed the “special modular transformation,” which gives
a real result. This subgroup is explicitly constructed for general NV and presented as a table for

N=2.
PACS numbers: 02.30.Jr, 02.60.Lj, 02.30.Qy

I. INTRODUCTION

This present work will focus on four themes. The first is
the specialization of the general modular transformation of
the theta function to that subgroup, here dubbed the “spe-
cial” modular transformation, which is relevant to the
Korteweg—de Vries equation. This construction is done in
Secs. II, III, and IV, beginning with a description of the
general transformation, then explicitly constructing the
“special” transformation for general V, and finally discuss-
ing in detail the special case N = 2, which is the subject of the
companion papers by the author.'

The second half of the paper will discuss in turn the
three remaining issues: the multiplicity of roots of the N-
polycnoidal wave dispersion relation for N>2 (Sec. V); the
so-called “paradox of the wavenumbers” (Sec. VI); and final-
ly which of the infinite number of mathematically equivalent
ways of writing the theta function is the “physical” represen-
tation in which the wavenumbers and phase speeds are those
of the actual solitons or sine waves of the solution (Sec. VII).
Before turning to the transformation itself, it is useful to
describe each of these last three themes in enough detail to
motivate the technical discussion of Secs. II, III, and IV.

The implicit dispersion relation for N-polycnoidal
waves, derived in Refs. 1 and 2, is linear in all the unknowns
for the special case N = 1 (the ordinary cnoidal wave discov-
ered by Korteweg and de Vries in 1895) and thus has a
unique solution. However, for N»2, the dispersion relation
is transcendentally nonlinear—that is, the algebraic equa-
tions we must solve are defined by infinite series in one or
more unknowns—so an infinite number of roots is at least
possible. The mere existence of the modular transformation
raises this to a near certainty. As reviewed in Ref. 1, the N-
polycnoidal wave is the second logarithmic derivative with
respect to x of the N-dimensional Riemann theta function
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6 [g](T,g) whose NV arguments are the “phase variables”

C=k(x—cit)+¢;, (1.1)
where x is the spatial coordinate, ¢ is time, and where the
constants k;,c; and ¢; are the jth wavenumber, phase speed,
and phase factor, respectively. The coefficients of the N-di-
mensional Fourier series in the §; of the theta function are
completely determined by the elements of the symmetric
N XN “theta matrix” T as shown explicitly in Eq. (2.1) be-
low. The special modular transformation allows the §; and ¢;;
(theta matrix elements) to be simultaneously altered in a
countable infinity of ways without changing the sum of the
infinite series. Thus, a single root of the dispersion relation
generates the solution at an infinite number of discrete points
in parameter space.

A more precise picture can be obtained by looking at the
limits of either very large amplitude or very small amplitude
where the phase speeds c; are known analytically,' and ex-
amining what we shall name the “modes” of the wave. In the
small amplitude regime, the diagonal theta matrix elements
t;>1 and the N-polycnoidal wave can be approximated as
the sum of N sine waves each proportional to cos (275;) for a
different j. Without loss of generality,? one can always re-
scale the N-polycnoidal wave to unit period. For N = 2, we
can thus always take k, = 1, but strict periodicity in x is
preserved if k, = n, where » is any integer >2. Because each
different choice for k, gives a distinct solution, one whose
graph is distinct from that for any other choice of n, we will
refer to the different possibilities as “modes” and write their
wavenumbers in square brackets separated by a comma, viz.,
[1,n].

Now when the modular transformation is applied to a
theta function, it alters a wavenumber by an integer. Thus,
each mode [1,n] can always be expressed in terms of a theta
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function with &, = 1 and k, = 2. Thus, the dispersion rela-
tion for the gravest [1,2] mode has roots corresponding to the
modular transformations of all the other modes [1,#]. In Sec.
V, we will tighten this argument and look at the multiple
roots of the dispersion relation in some detail.

The “paradox of wavenumbers” arises because one can
equally well define the “modes” of the N-polycnoidal wave
in terms of the limit of large amplitude. In this regime, the
peaks of the wave are very tall and narrow and essentially
indistinguishable (because of their narrowness) from the soli-
tary waves (solitons) of the spatially unbounded (as opposed
to periodic) Korteweg—de Vries equation. There are solitons
of N different sizes on each interval and, as explained in Ref.
1, the role of the wavenumbers k; is quite different from that
in the small amplitude limit in that the &; specify how many
solitons of the jth size appear on each spatial period. To em-
phasize the different role of wavenumbers, we shall denote
the modes as identified in the near-soliton regime by writing
the wavenumbers in braces.

The “paradox” referred to aboveis that { 1,1} is now the
gravest N = 2 mode (one tall soliton and one short soliton on
each unit spatial interval), whereas the simplest small ampli-
tude mode is [1,2]. Since the linear dispersion relation gives a
unique phase speed in the limit of infinitesimal waves, it is
not possible to superimpose two sine waves with k; = &k, = 1
and obtain two distinct phase speeds; such a mode would
collapse into an ordinary (V= 1) cnoidal wave. Since the
wavenumbers are fixed parameters of the implicit dispersion
relation, this apparent contradiction about the identity of the
gravest mode is very confusing.

In Sec. VI, this paradox will be resolved with the aid of
the special modular transformation. There, itis shown that if
onesets k; = k, = 1 and begins to vary the amplitude down-
wards in small steps, solving the dispersion relation numeri-
cally at each step starting from the known soliton velocities,
one will eventually compute the [1,2] small amplitude mode.
However, the numerical phase speeds obtained with
k, = k, = 1 will not be those of the [1,2] mode directly, but
rather the modular transformation of these phase speeds.
Thus, the paradox is resolved: the gravest {1,2] and {1,1}]
modes are indeed the same, continuous mode, but the equiv-
alence can be demonstrated only via the special modular
transformation.

This in turn raises the third issue. Given that a particu-
lar N-polycnoidal wave can be written in a countable infinity
of ways thanks to the modular transformation, what repre-
sentation, if any, is best? In the limit of very large or very
small amplitude, we have already answered this question:
For the gravest N = 2 mode, for example, the [1,2] ({1,1})
representation is best for small (large) amplitude because the
phase speeds can then be physically interpreted as the actual
phase speeds of the two linear sine waves or of the two soli-
tons, respectively. What is to be done for intermediate ampli-
tude, however? In Sec. VII, we will attempt to answer this
question and give several alternative ways of quantifying the
(thus far) vague meaning of ‘‘small amplitude” and “large
amplitude.”

The final section of the paper is a summary and pro-
Spectus.
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Il. THE GENERAL MODULAR TRANSFORMATION

The N-polycnoidal wave is the second logarithmic deri-
vative with respect to x of the N-dimensional Riemann theta

0
function [ 0} (T,E), where the N arguments (“‘phase varia-

bles”) are § = ({1,626, ) With §; = k;(x —¢;t) + ¢; as in
(1.1) above and where the theta function is defined by the
uniformly convergent sum

oc 0 0

oo
23 e D)

where € = (€,,6,...,€5) and €' = (€], €5,...,€x) are together
the “characteristic” of the theta function and the ¢;; are the
elements of the N X N symmetric “theta matrix” T. In Ref. 1
and also the works of Nakamura,* Hirota and Ito,* and their
collaborators, the details of calculating the phase speeds c;
and off-diagonal theta matrix elements (z;, %) [“un-
knowns”] in terms of the wavenumbers k; and diagonal the-
ta matrix elements ¢; [“parameters”] are explained. In this
work, however, we shall concentrate solely on transforma-
tions of the theta function.

The most general transformations are lucidly described
in a recent book by Rauch and Farkas.’ So as to conform
with their notation and that of most other mathematics
texts, this paper will use theta matrix elements ¢; that are
imaginary in contrast to the real matrix elements 7, and R;
which are more convenient in the two companion papers
{Ref. 1). The results given in Table I, however, are notation-
independent as explained in the table caption. If N is the
dimensionality of the theta function (mathematicians often
use g for N because N is also the “genus” of the Riemann
surface associated with the theta function), then the transfor-
mations are generated by a (2N ) X (2N} dimensional matrix
M which is a member of Sp(¥,Z ), the so-called “homogen-
eous symplectic modular group.” The term “‘symplectic”
means that if one defines an (2N )X (2N ) matrix J via

J;( Oy wIN)’
—Iy Oy

where 0, is the N X N matrix whose elements are all zeros
and I isthe N X Nidentity matrix, then for any matrix M in
the general 2V X 2N symplectic group,

MIMT =], (2.2)
where M7 is the transpose of M. One can show that (2.2)
implies

det M| = + 1, (2.3)
where “det” denotes the determinant. “Modular” denotes
that subgroup of the general symplectic group whose matrix
elements are all integers. Rauch and Farkas® explain why M

must be both symplectic and modular, but their careful and
readable exposition will not be repeated here.

(2.1)
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The individual transformations are actually expressed
in terms of submatrices of M, so Rauch and Farkas write M
in the block form

D C)
M= y
(B A

where A, B, Care all N X N matrices. They prove the follow-
ing.

Theorem: (Modular Transformation) If M is a member
of the (2N )X (2N ) homogeneous symplectic modular group
andif A, B, C,and Dareits (N X N ) submatrices as defined by
(2.4) above, then if

E=[CcT+D) 1, (2.5)
= (AT +B) (CT+ D)™/, (2.6)

(2.4)

where T is symmetric and positive definite imaginary and

¢ = De — Ce’' + diag (CD"), (2.7)
& = — Be + A€’ + diag (AB”), (2.8)

where diag (R) is the vector-valued function of an arbitrary
square matrix that returns the diagonal matrix elements of
its argument as its result, i.e.,

n
. Y22
diag (R)= b 2.9

Y

then
ol o) €ti-kex|m( S S pucit)]o[S]wm
) (2.10)

where the P,; are the elements of the N X N matrix P, where
=(CT+D)"'C (2.11)

and where K is a constant dependent on M, ¢, and €. Fur-
thermore, T is a theta matrix, i.e., symmetric and positive
definite imaginary.

This theorem is far too general for the theory of the
Korteweg—de Vries equation. First, the Korteweg—de Vries
solution u(x,? }is proportional to the second logarithmic deri-
vative with respect to x of the theta function, so the constant
K in (2.10), which is explicitly computed by Rauch and Far-
kas, is irrelevant to the theory of the Korteweg-de Vries
equation and shall be ignored here.

Second, since the theta matrix T is positive definite
imaginary, i.e., it must be complex, most of the transforma-
tions described by the theorem will yield complex phase var-
iables § ; even if the untransformed variables are all real.
Since complex coordinates are physically meaningless for
the waves of the Korteweg—de Vries equation,® it follows
that one loses nothing by concentrating only on that sub-
group of transformations which yields real coordinates.

Inspecting (2.5) reveals two possibilities for such a sub-
group: (i) D = 0, in which case 5 is pure imaginary and all the
factorsof i =y — 1 in(2.5) and the theta series (1.2) cancel to
give a series involving real x and ¢ only or (ii) C = 0 so thatg‘
is real if § is real. The first possibility is equivalent to apply-
ing the Poisson summation method to rewrite the Fourier
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series of the theta function as a series of Gaussian functions
as explained in an earlier paper by the author.? Strictly
speaking, the Poisson sum is merely the special case
C= -1,,B=1I,. One can easily show, however, that us-
ing the most general C, B allowed by the symplectic condi-
tion (2.2) is equivalent to possibility (ii) for some A, B fol-
lowed by Poisson summation. Consequently, (i) adds
nothing to (ii) except the possibility of Poisson summation
which was already thoroughly explored in earlier work.
Therefore, the rest of this article will focus on the second
case C = 0. Keeping T pure imaginary then requires that
B = 0, so the general sympletic modular transformation has
been reduced to those for which A and D, the diagonal sub-
matrices, are the only nonzero blocks.

By substituting such a block diagonal M into the sym-
plectic condition (2.2) and noting

D’ 0)
T _
M ‘(0 AT

one can show that the symplectic condition is satisfied if and
only if

(2.12)

=[D']". (2.13)

Rauch and Farkas® give a complete set of that finite number
of generators whose products and inverse give the most gen-
eral symplectic matrix which is also modular, i.e., has inte-
gral elements. For the special case considered here, one can
discuss these (2V) X (2/V ) generating matrices in terms of a
single N X N block (say the A block) because the rest of M is
specified uniquely by B=0, C=0, and D= [AT] ' ac
cording to (2.13). In the next section, these generators will be
explicitly constructed.

11l. THE SPECIAL MODULAR TRANSFORM

The modular transformation with B = C = 0 so the M
is block diagonal will be referred to as the “special” modular
transformation. As shown in the previous section, the ““spe-
cial” transformation is, excluding Poisson summation, the
most general transformation of theta functions which is phy-
sically relevant to polycnoidal waves of the Korteweg—de
Vries equation. It is useful to restate the theorems of the
previous section for this special case.

Theorem: (special modular transformation) Let

£ =Ag, (3.1)
T = ATA7, (3.2)
e=[A""]7 (3.3)
& = A€, (3.4)

where A is the lower right-hand block of a block-diagonal
matrix M of the symplectic modular group. (The general
form of A is constructed below.) Then

o|c]&h=xo %],

where X is a constant.

Note that the Gaussian factor has disappeared because
the matrix P of the general theorem is now identically zero;
the special transformation takes a theta Fourier series direct-
ly into another theta Fourier series.

(3.5)
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The generators are of two classes. For each, one begins
with the N X ¥ identity matrix and modifies it according to a
prescription given by Rauch and Farkas. For the first class,

" A,; in their notation with i,/ restricted so that /% j, add
— 1 to the ( /,i} element of the identity matrix. For the second
class D; change the sign of the (i) element of the identity
matrix. Rauch and Farkas also include the inverses of the

* 4, in their generator set zs the ~ 4, ;; the D, are their own
1nverses. (The ~A,; are obtained by adding + 1 to the (/i)
element of the identity matrix.) One thus obtains a complete
(but not necessarily minimal) generating set with 2N2 — N
members. The statement that this set is the complete gener-
ator of the special transformations means that the most gen-
eral N X N matrix 4 which appears in (3.1)—(3.3) is the pro-
duct of an arbitrary number of the generating matrices each
raised to an arbitrary, non-negative power, i.c., if one adopts
the revised notation of labeling the generators A,,
i=1,2,..,2N? — N, then the most general transformation is

A=APAEADAT, (3.6

q

wheren , 20, 1<ij <2 N’ — Nbutareotherwise arbitrary; m,
the number of factors, is arbitrary also. The generators do
not commute even for the special transformation, so (3.6)
usually cannot be simplified.

TABLE I. The transformations produced by the generators of the special
modular group A, and A,, and their inverses for N = 2 (double cnoidal
wave). The plus signs correspond to A : the minus signsto A, ' and A, ™'

The( * ) quantities are the new variables created by the transformation. The
matrices whose elements are 7, and R,; are explained in Boyd'; the T,
transform exactly as those of the usual imaginary theta matrix elements 7, ;
used by mathematicians. The k; and ¢; are the wavenumbers and phase
speeds that appear in the “‘angle” variables X and ¥ when the special modu-
lar transformation is applied to the double cnoidal wave of the Korteweg—de
Vries equation.
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The D; generators merely replace §;— — &;. This is not
a very interesting transformation since one can always take

0 0
g [0] ord [1 ], whichever is convenient, as the theta function

by adjusting the phase factors ¢; in (1.1). These theta func-
tions are always even in each of £,,(,,...,{ v, so the transfor-
mation described by the N D, invariably leaves the theta
function unaltered and is physically irrelevant. Consequent-
ly, the only interesting nontrivial transformations are those
generated by the smaller set of the 2 N ? — 2N matrices that
Rauch and Farkas label "4, and " 4,;

Rauch and Farkas® prove that T is a theta matrix, i.e.,
symmetric and positive definite imaginary, for the general
modular transformation of any A, so the transformed theta
function series is always convergent. Although the determi-
nant of T is invariant under transformation (proof:
det A; = 1foralliand the determinant of the product of two
arbitrary matrices is the product of their determinants), the
trace of T, i.e., the sum of the diagonal elements, generally is
altered by the transformation as evident in Table I. Since the
trace of the theta matrix is the sum of the eigenvalues, it
follows that the eigenvalues, and therefore the rate of con-
vergence of the series are normally changed by the special
modular transformation even though the fact of conver-
gence (does it converge or diverge?) is never altered.

These matrices *4,; exist only for N>2, i.e., for the
double cnoidal wave or higher. All modular transformations
for the ordinary cnoidal wave (¥ = 1) yield a result in which
the spatial coordinate has both real and imaginary parts ex-
cept the Poisson summation discussed in the author’s earlier
paper.' In the next section, the simplest nontrivial case
N = 2 will be described and its generators will be given expli-
citly.

IV. THE SPECIAL MODULAR TRANSFORMATION FOR
N = 6: DOUBLE CNOIDAL WAVE

In Rauch and Farkas® terminology, there are four gen-
erators for N = 2, but since half of these are inverses of the
other half, there are only two generators’ in the usual ter-
minology of group theory where inverses are not counted,
ie.,

(1)

A, = (1 (1)) (4.2)

[The inverses are obtained by merely changing the sign of the
off-diagonal element for both (4.1} and (4.2).] From Table I,
it is apparent that the transformations wrought by 4, can be
obtained from those created by 4, by interchanging the X
and Y coordinates and the subscripts on the theta matrix
elements: there is effectively only a single transformation
(and its inverse) which can, however, be applied to replace
either X or Y by the sum (X - Y).
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In the companion papers by Boyd,' it was convenient to
work in terms of modified theta matrices whose elements are
denoted by T;; and R;;. Since,

T,;=mIm(t;)) (4.3)

the T, ; transform exactly as the complex elements #; used by
mathematicians and vice versa.

The matrix elements R, ;, which give the coefficients of
the Gaussian series of the theta function, are those of a ma-
trix R which is proportional to the inverse of T. When
T—T = ATA7, the corresponding matrix R = (277%) T™'
transforms as

R=[AT]"'RA (4.4)

Equation (4.4) applies for the special modular transforma-
tion of any N; the transformed R for the special case N = 2
are also given in Table 1.

Recalling that X =%, (x —¢c,t)+ ¢, and Y=k,
(x — ct) + ¢,,itfollowsthat the phase speeds and wavenum-
bers are also altered by the transformation. The changes
made by the generators and their inverses are given in Table
I

V. THE BRANCHING OF THE DISPERSION RELATION

As shown in the Introduction, the existence of the mo-
dular transformation implies that each mode of the 2-polyc-
noidal wave can be transformed into a theta function with
k, = 1, k, = 2. This suggests that the dispersion relation for
any given set of parameters is infinitely multibranched. At a
minimum, it has been shown that if we attempt to make a
contour plot of ¢,, ¢,, and ¢,, for a single mode, say the gra-
vest, then all the higher modes, which are countably infinite
in number, provide extraneous roots of the dispersion rela-
tion for at least some values of the parameters.

Two issues remain. First, when X, = 1 and &, = 2, for
example, does the [1,3] mode give a solution of the implicit
dispersion relation for all values of (¢,,,,,) or only for some
limited region in parameter space? It is reasonable to conjec-
ture that the correct answer is “all”” since the modular trans-
formation is not subject to any parametric restrictions: The
transform of a theta function is always a uniformly conver-
gent series of proper theta function form. However, the
transformed values of the diagonal theta matrix elements
depend on the off-diagonal elements which unfortunately
are part of the solution of the dispersion relation, so this
conjecture cannot be proved without deeper analysis than
that done here.

The second issue is whether all solutions of the implicit
dispersion relation are ‘“‘regular,” that is to say, are modes
which have well-defined limits for small and large ampli-
tude. Here again, one is tempted to speculate that the answer
is that all solutions are regular. The N-polycnoidal waves
have an analytic structure which is extraordinarily tidy and
simple in other respects. Furthermore, as shown by Boyd,’
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the implicit dispersion can be solved by perturbation theory
for both small and large amplitude with good overlap
between the two regimes; the overlap implies it is difficult to
insert irregular modes that exist only for intermediate pa-
rameter values. However, these are not proofs but plausibil-
ity arguments. It is known that at least one physically impor-
tant type of solitary wave, the “modon” of Stern, Flierl,
McWilliams, Larichev, and Reznik,® does not have a small
amplitude limit, but exists only when the amplitude is above
some threshold.

Thus, a full resolution of these two issues must remain
for future research. It is certain, however, that the implicit
dispersion relation for N-polycnoidal waves has multiple so-
lutions for N>2.

VI. THE WAVENUMBER PARADOX AND THE
CONTINUATION METHOD

A good numerical procedure for tracing the structure of
a mode is the so-called “continuation” method. The basic
idea is to vary one or more of the parameters in small steps.
At each step, the algebraic equations are solved for the un-
knowns via Newton’s method. The first guess which is need-
ed to initialize the Newton iteration is obtained by using the
results from the previous point in parameter space (or by
linear extrapolation from the results at the two previous
points); this will always give convergence if the steps in the
parameter are sufficiently small. To initialize the parameter
march, one needs to know the approximate solution at some
point in parameter space. The perturbation theory of Boyd'
provides such approximate solutions for both very large and
very small amplitudes i.e., for very large and small values of
t;; , 50 the continuation method can be easily applied to all the
regular solutions of the implicit dispersion relation.

The “paradox of the wavennumbers” is that the gravest
mode in the near-soliton limit is { 1,1}, i.e.,, hask, =k, =1
while the lowest mode in the small amplitude regime is de-
noted [1,2] because k, = 2k, = 2. When the continuation
method is applied to the { 1,1} mode, beginning in the large
amplitude, near-soliton regime, and both diagonal theta ma-
trix elements are simultaneously increased, what does the
algorithm give when |¢;|>1? This limit is the small ampli-
tude regime where a mode that is [1,1], i.e., the sum of two
sine waves of different phase speeds but identical wavenum-
bers, cannot exist. Table II answers this question: The con-
tinuation method, applied with k, = k, = 1, gives values for
¢, which are the modular transform of those for the gravest
small amplitude mode [1,2].

The top line of the table shows the near-soliton regime;
the |t | are fairly small and the “Gaussian,” large amplitude
perturbation theory’ is quite accurate. By the time the bot-
tom is reached, we are in the small amplitude regime and the
Gaussian perturbation theory is inaccurate while perturba-
tion theory beginning with two Fourier components as the
lowest approximation gives excellent results. However, the
continuation method gives c, = — 2877 in the limit whereas
cos (27[x — ¢, t]) and cos (47[x — ¢, t]) have small-ampli-
tude phase speeds of — 477 and — 1677, respectively.
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TABLE II. Numerical solutions of the residual equations, obtained through the “continuation”method, are compared with zeroth-order Fourier perturba-
tion theory (linear sine waves) and Gaussian perturbation theory (two solitary waves). The percentages are the relative errors. The wavenumbers k, and &, for
the numerical and solitary wave calculations are both equal to 1; k, = 2 for the Fourier series approximation. The variable ¢,™ ( = [¢; + ¢,]/2}is the second
phase speed after a modular transformation via the generator matrix 4,. This transformation leaves ¢, and k, unchanged, but it alters &, from 1 to 2.

mod

Ty, T [ c, c, ¢, error ¢, error
0.8 1.6 313.16 — 402.08 — 44.46

(Gaussian) 313.15 — 402.06 9.E-6 6.E-5

{(Fourier) — 39.48 —157.92 893.23% 71.84%
1.2 2.4 73.30 —342.29 — 134.49

(Gaussian) 73.31 —341.68 0.02% 0.18%

(Fourier) — 39.48 — 15791 205.67% 14.83%
1.6 32 4.17 — 308.46 — 152.14

(Gaussian) 427 —305.72 2.42% 0.89%

(Fourier) — 39.48 — 15791 89.44% 3.65%
2.0 4.0 — 21.14 —291.40 —156.27

(Gaussian) — 20.61 - 285.52 2.53% 2.02%

(Fourier) — 39.48 —157.91 46.45% 1.04%
24 4.8 — 31.49 —283.25 - 157.37

(Gaussian) — 29.61 —274.83 5.97% 2.97%

(Fourier) — 39438 — 157.91 20.25% 0.35%
2.8 5.6 — 3594 —279.48 — 157.71

(Gaussian) - 3111 —270.65 13.44% 3.16%

{Fourier) — 39.48 — 157.91 8.97% 0.13%
32 6.4 — 37.90 ~277.76 — 157.83

(Gaussian) — 2775 —272.01 26.76% 2.07%

(Fourier) — 39.48 — 15791 4.01% 0.05%

Agreement comes only after making a modular transforma-
tion that converts the theta function representation from one
with k, = 1 to £, = 2, which is the actual wavenumber of
one of the two dominant components of this mode in this
limit of !t,—,— |-—>oo .

It is useful to see explicitly how a mode can thus diguise
itself. The lowest four terms of the Fourier series of the theta
function are (in any representation)

O=1+4e Tcos2mX)+ e~ ™2 cos(2mY)

+e~ T Tu—Tacog2r[X + Y1), (6.1

where
X=kix—ct), Y=kjx—c,t) (6.2)

The author’s companion paper on perturbation theory'
shows how to evaluate the phase speeds and T, in the “phys-
ical” representation [1,2]%; the results are compared against
¢, and ¢, in Table IL. It is also possible, although one
would never want to do it except to make a point, to calculate
perturbatively in the “unphysical” [1,1] representation as
done in Appendix A of that same paper where it is shown
that

¢, = — 473, (6.3)
c,= — 2877, (6.4)
Ty, = —T, +1og3), (6.5)

for T,,, T,,> 1. Note tht ¢, in (6.4) is the limit of the numeri-
cal calculations in Table II for the column labeled “c,.”

In the physical representation [1,2]°, T, = log(3) and
the Fourier series (6.1) is well approximated by the sum of
the first three terms. In the “unphysical” [1,1] representa-
tion, however, (6.5) shows that the fourth term in (6.1), pro-
portional to cos (27[X + Y']) is larger than the third by a
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factor O (e”"). Discarding cos (277Y) and taking the double

logarithmic derivative gives, using (6.1)+6.5), the
Korteweg—de Vries solution
ulx,t)
= — 4877~ T cos[2m{x — (~ 4n?)t }]
+de~ Tt Tucos[2m{2x — (— 47" — 2877) t }]).
(6.6)

The second term in (6.6) travels at a phase velocity of
— 1677; it is just the expected second harmonic with k, = 2.
In the [1,1] representation, this term appears in disguise as
cos(27[X + Y1) [as opposed to cos (27Y) in the physical
[1,2]° representation], but this disguise cannot change its
physical nature.

In the limit of small amplitude, the N = 2 Fourier series
for u(x,t) is always dominated by just two terms, but the
terms wear different disguises in different representations.
The second harmonic is cos (27X + Y]} in the [1,1] repre-
sentation, cos (27Y ) in the [1,2)7, cos 27{ — X + Y}) in the
[1,3], and so on.

The moral of the story is that while one can legitimately
solve the dispersion relation using any of the infinite number
of disguises for a mode which are allowed by the special
modular transformation, there is in general only one repre-
sentation for which the ¢, and ¢, are the actual rates at which
components of the 2-polycnoidal wave are traveling. Identi-
fying this “natural” or “physical” representation is clearly
an important issue and is therefore the theme of the next
section. Table II also shows that the {1,1} and [1,2] modes
are indeed the same, but the equivalence of these two differ-
ent disguises of the gravest mode of the 2-polycnoidal wave is
obvious only through the modular transformation.
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VIi. THE CANONICAL OR “PHYSICAL”
REPRESENTATION

Because of the freedom provided by the special modular
transform, each N-polycnoidal wave for N>2 can wear a
countable infinity of diguises. It follows that a major issue is
to identify what representation, i.e., what set of wavenum-
bers k, and k,, give the “physical” representation in which
the wavenumbers and phase speeds directly describe the
wave.

We will assert, and then demonstrate below, that the
following descriptions of the “physical” or canonical repre-
sentation are equivalent.

(i) It is the representation in which the phase speeds c,
and ¢, give the actual average rates of travel of the solitons or
sine waves.

(ii) It is the representation which the perturbation series
of Boyd' calculate in, i.e., the perturbation methods auto-
matically give phase speeds which are the true average rates
at which the wave crests move. )

(iii) It is the representation in which (small amplitude)
the off-diagonal matrix elements ¢,; (i# j) are very small in
absolute value in comparison to the diagonal elements ¢; or
equivalently (large amplitude) the off-diagonal elements R, ;
are small in comparison to the diagonal elements of the in-
verse theta matrix R;.

The first description is simply a definition of what we
mean by a “physical” representation. For sufficiently large
or small amplitude, the N-polycnoidal wave reduces to the
usual N-soliton solution or to a sum of N sine waves, so this
definition of a canonical representation is always unambigu-
ous if we are sufficiently close to one or the other of these
limiting cases.

The second description is an obvious consequence of
the first because the zeroth-order solutions of the perturba-
tion theory are the limits of infinitely large or small ampli-
tude. Thus, the wavenumbers that appear in the zeroth-or-
der solution always count the number of solitons on the
interval or are the actual wavenumbers of the sine waves,
and this is not changed by adding the higher-order correc-
tions.

The third description is consequence of the following
theorem proved in Rauch and Farkas.’

Theorem: When the theta matrix is diagonal, i.e.,
t;; = 0ifi# j, then the N-dimensional theta function may be
written as the product of N one-dimensional theta functions

N
016260 T) = H 0(&1st:)- (7.1)
The significance of the theorem is that since u{x,?) is
proportional to the logarithm of the theta function, each
term in the product in (7.1) will contribute additively to the
solution of the Korteweg—de Vries equation:
N d 2
ulx,t)=12 —In0(S,z2;). 7.2
(x,t) .-; s (6:sti) (7.2)
This is precisely the situation which occurs in the limits of
very large or very small amplitude: the N-polycnoidal wave
reduces to a sum of NV solitons or sine waves each with its own
wavenumber, phase speed, and amplitude. Equation (7.2)
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and definition (iii) of the ‘“‘physical” representation are also
consistent with the perturbation theory of Boyd': in the limit
that the diagonal theta matrix elements (or inverse theta ma-
trix elements) become very large, the off-diagonal elements,
which have finite zeroth-order values, necessarily become
small relative to the diagonal elements. Thus, both the limit-
ing behavior of the N-polycnoidal wave together with (7.2)
and the perturbation theory show that (iii) is true in the phys-
ical representation at least for sufficiently large or small di-
agonal theta matrix elements.

Strictly speaking, of course, no theta matrix for a
Korteweg—de Vries solution is ever exactly diagonal; as
shown in Appendix B of Ref. 1, the off-diagonal theta matrix
elements are responsible for the phase shifts that occur
whenever solitons collide. Still, the basic argument is cor-
rect, and it can be reversed to justify definition (ii) from (iii).
The implicit assumption of the perturbation series of Boyd'
is that the order of magnitude of different terms in the series
can be determined solely from the diagonal theta matrix ele-
ments, which is sensible only if the off-diagonal theta matrix
elements are small in comparison as required by (iii). Appen-
dix A of the companion paper’ on perturbation theory is able
to calculate perturbation series in an “‘unphysical” represen-
tation only by assuming the diagonal and off-diagonal ma-
trix elements are of the same magnitude. Although no rigor-
ous proof will be given, the fact that the elements of the
special modular transformation are always integers strongly
suggest that such a transformation will invariably destroy
the smallness of the off-diagonal theta matrix elements rela-
tive to the diagonal elements at it does in (6.5) so that this
smallness is a unique property of the physical representation.

The only flaw with these three equivalent descriptions
of the “physical” representation is that they are all in some
way tied to the limiting cases of extremes of amplitude or
equivalently, of diagonal theta matrix element size. What
does one do for intermediate amplitude?

The mathematical response is to use analytic continu-
ation in the parameters: If a given intermediate amplitude
solution is the smooth continuation as the parameters are
slowly varied of an infinitesimally small amplitude solution
whose physical representation is [1,2]”, then this same de-
scription is the physical representation of the intermediate
amplitude solution, too. Since there is no ambiguity in the
limit, there is no ambiguity in this extended definition either
as long as the solution branches are continuous with either
infinitesimal or infinite amplitude. Note that we use a super-
script “P” to denote that the physical representation of a
mode is meant, and not one of the infinite number of other
representations allowed by the special modular transforma-
tion.

There is a remaining physical ambiguity in that Table II
shows that the [1,2]” and {1,1}” representations both de-
scribe the same continuous mode: For intermediate ampli-
tude, is it better to describe the polycnoidal wave as a sum of
sine waves or of solitons? The answer is given in Ref. 2: For
intermediate values of amplitude or of theta matrix ele-
ments, both descriptions, as solitons and as sine waves, are
qualitatively and even quantitatively correct, and which is
better is a matter of individual preference.
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Viil. SUMMARY

Mathematicians have known for at least half a century
that the theta functions could be expressed in an infinite
number of ways via the so-called “modular transformation.”
The general modular transformation, however, usually gives
complex results even though only real values of the space
and time variables x and r are relevant to the theory of the
Korteweg—de Vries equation. For the ordinary cnoidal
wave, which was discovered eighty years ago, the only non-
complex modular transformation is that single transforma-
tion which can alternatively be obtained by taking the Pois-
son sum of the Fourier series of the theta function. Boyd? has
already discussed the usefulness of this Poisson sum.

It is shown in this paper, however, that for the N-poly-
cnoidal wave with N>2, where N is the number of arguments
of the theta function, there exists a subgroup of the general
transformation which does yield nontrivial real results. This
subgroup is labeled the “special” modular transformation
and is defined to specifically exclude the Poisson sum, which
also gives real-valued results but multiplies the theta func-
tion by a Gaussian factor. Only the “special”’modular trans-
formation and the Poisson sum are useful in the physics of
the Korteweg—de Vries equation.

By specializing the rules for the general transformation
given in Rauch and Farkas,® the generators of the “special”
modular transformation are explicitly constructed for arbi-
trary V. The two generators and their inverses for N = 2 are
given in Table I above, which also shows the effects of the
transformation on the phase speeds and wavenumbers which
appear in the “phase” variable that are the arguments of the
theta functions.

Since the “special” modular transformation allows
each polycnoidal wave to be expressed in an infinite number
of ways, a “physical” representation is defined to be that in
which the wavenumbers and phase speeds of the theta func-
tion match those of the peaks and troughs of the actual wave.
Since different polycnoidal waves are obtained for different
(physical) wavenumbers, it is helpful to introduce the nota-
tion of writing the wavenumbersin [ ]{when &is represented
by a Fourier series) or { } (Gaussian series) and adding a
superscript P when the physical representation is meant.

The importance of the special modular transformation
in physical applications of the Korteweg—de Vries equations
and its cousins is twofold.

First, it shows that the implicit dispersion relation of
Boyd' for the phase speeds of the polycnoidal wave has an
infinite number of solution branches for a given set of param-
eters (including a fixed set of wavenumbers) even though
there is only a single branch for which the wavenumbers are
those of the wave’s physical representation. Perturbation
theory and the “continuation” method are offered as useful
ways of computing the physical branch rather than one of
the infinite number of other real solutions permitted by the

mathematics.
Second, the branch which is the sum of a simple linear

sine wave and its second harmonic, [1,2]° in the notation
introduced here, is the sum of one tall solitary wave and one
shorter solitary wave on each periodicity interval in the op-
posite limit of large wave amplitude. This solitary wave limit
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is written {1,1}7; a large amplitude polycnoidal wave for
which the wavenumbers &k, = 1 and &, = 2 are the physical
ones is a solution with three solitary waves on each periodic-
ity interval—two of one height and one of a different size.
Thus,

(1,217 ={L1}" (8.1)

in the sense that this single branch must be expressed using a
different set of wavenumbers in different amplitude limits if
the phase speeds that appear in its theta function are to
match those of the actual troughs and crests of the wave.

The special modular transformation is thus essential to
understanding the polycnoidal wave because it allows us to
change wavenumbers and phase speeds at will so that for any
amplitude, we can make the mathematics reflect the physics.
Numerically solving the residual equations for fixed wave-
numbers, for example, k£, = 1 and &, = 2, will always give us
phase speeds to insert into the theta functions. When we
have passed from small wave amplitude to large, however,
the phase speeds of the theta functions have only mathemat-
ical significance, and differ radically from the actual rates at
which the two solitary waves of the branch indicated in (8.1)
are traveling, unless we use the special modular transforma-
tion to alter the second wavenumber to k, = 1.

For the Korteweg—de Vries equation and many other
soliton equations which are real valued, the special modular
transformation (and the Poisson sum discussed in Refs. 1
and 2) are the whole story. Other soliton equations like the
cubic Schrodinger equation, however, are intrinsically com-
plex. It is no longer obvious that we should reject the com-
plex-valued transformations which belong to the general
modular group but not to the special subgroup defined and
constructed here. Future work should explore the physical
significance of the general modular transformation for the
cubic Schrodinger equation and its complex-valued cousins.

Note added in proof: H. Segur and A. Finkel (unpub-
lished preprint) have applied two-dimensional theta func-
tions and the modular transformation to the Kadomtsev-
Petviashvili equation (two space dimensions but only a single
phase speed). Their concept of a “basic” theta matrix is an
attempt to remove the ambiguity allowed by the modular
transformation,; in the limits of large and small amplitude, at
least, their “basic> matrix is that of the “physical” represen-
tation defined here. An earlier work on this same equation
{(with H. Philander) is “Nonlinear Phenomena” in Lecture
Notes in Physics, No. 189, edited by K. B. Wolf (Springer-
Verlag, Berlin, 1983).
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A new class of classical field theories, in 1 + 1 dimensions, is introduced, of the form

iV, —m¥ — $y(g, + g,V \Wy, ¥ — W (g, + g/°)WW = 0.Itis shown that these theories are
relativistically invariant; they do not, however, preserve parity in general, and thus could be used
to describe the dynamics of weak interaction processes. The prolongation structure method is
used to investigate the existence of pseudopotentials. When the coupling constants g, and g, are
zero, the corresponding theory is then characterized by an infinite family of conservation laws and
is thus completely integrable. For this very case, the Bicklund map (pseudopotential) furnishes
the equivalent of a Lax pair of operators as well as a nontrivial Bicklund transformation and

solutions of soliton type.

PACS numbers: 02.30.Jr, 03.50.Kk

I. INTRODUCTION

Since a decade or so, nonlinear systems (of partial differ-
ential equations) brought a new interest in the physics com-
munity. Indeed, such systems present new kinds of solu-
tions, e.g., solitons, which behave in a radically different
manner than solutions of linear systems. These objects have
direct physical interpretations in many different contexts.
One may consider, for instance, the importance of the soliton
solutions of the well-known sine—-Gordon equation in regard
of the dynamical behavior of ultrashort laser pulses, those of
the nonlinear cubic Schrodinger equation in nonlinear op-
tics, or the role played in hydrodynamics by the Korteweg-
de Vries, Kadomtsev—Petviashvili, and Benjamin—Ono
equations.

The purpose of this article is to propose and study a
model of classical field theory, defined in 1 + 1 space-time
dimensions, generalizing the classical massive Thirring
model.! Like the Thirring model, the proposed one repre-
sents the self-interaction of a spinor particle. The require-
ments of parity and time-reversal invariance are dropped (a
quantized version of it could therefore be used to describe a
weak self-interaction), hence the self-interaction can have a
more general form [see (2.1) below].

The Thirring model was initially proposed in 1958 and
its original interest was in that it provided a solvable model
of a nonlinear quantum field theory. The basic equations of
the classical version of that model are

iy, —m¥ — gWy Py ¥ =0, (1.1)
where
o1 - _[ 0 1]
7/0_7/‘"[1 0]’ rETn=loy ol
-1 0
= — = 1=
7/5— 75 YD?/ [ O 17

and ¥ = ¥"° ¥, =3¥/3x* The quantum theory built
around this equation raised many polemics in its early his-
tory and revealed itself to be somewhat tricky.” It was later
shown that (1.1) possesses soliton solutions which can be
constructed, for example, from the soliton solutions of the
sine-Gordon equation via so-called Coleman’s correspon-
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dences.>* Considered in a purely classical scheme, the model
also accepts solitons as solutions and a particularly nice way
to obtain them is by using the prolongation method devised
by Wahlquist and Estabrook.>¢ It is known that their proce-
dure is quite rich in content.”® Indeed its central result,
Bicklund maps (or, equivalently, pseudopotentials) may
yield several secondary results such as conservation laws,
solitons, and linear equations that can be used as a starting
point for an inverse scattering transform problem.

The outline of the present article is as follows. In Sec. I,
we introduce a general model and establish its Poincaré in-
variance. In Sec. III, we literally apply the prolongation
method. To this end, it is convenient to replace the differen-
tial system by an equivalent Pfaffian system of two-forms.
We then reset the integrability conditions into a set of com-
mutation relations on operators lying in a Lie algebra which
we shall choose to be s1 (2,C). To each solution of that set
corresponds a Backlund map and the family of these will
provide us with a classification of submodels with respect to
subalgebras of s1 (2,C). When the whole algebra is involved,
we observe that the Backlund map contains a free parameter
which proves to be important since it characterizes the very
case for which the most interesting results are obtained. The
search for Biacklund transformations is the object of Sec. IV
and there again it is seen that the free parameter is essential
in order to obtain a nontrivial transformation. In Sec. V, we
shall find solutions of soliton type for the nontrivial case with
the help of the Biacklund transformation found in the preced-
ing section. Finally, Sec. VI will be devoted to conclusions;
we shall give a summary as well as an outlook on certain as
yet unanswered questions directly related to the subject of
this article.

Il. A GENERALIZED THIRRING MODEL

Let us begin by introducing some of the basic notation
that we shall use throughout our investigation. The space of
independent variables will be the usual Minkowski’s mani-
fold M with local coordinate functions {x° =1, x' =x} or
{26 =t + x, 27 = t — x}, and metric tensor
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g=[(l) —01]'

We define a field ¥ with components ,,1, as a M—C? map-
ping. Notice that the components can also be thought of as
local coordinate functions on a manifold NV (the space of de-
pendent variables), and we may thus define the first jet bun-
dle J'M,N) with local coordinate functions
{x*;¥:, ¥, = Y,/3x"}. We shall follow Einstein’s summa-
tion convention on repeated indices. Finally, all constants
will be considered real unless they are explicitly defined as
complex quantities.

Examining (1.1), we notice that it is characterized by a
nonlinear part made of a single trilinear form in the fields:
certainly, this is not exhaustive. We shall therefore genera-
lize the system by implementing (1.1) with a more general
linear combination of trilinear forms. The most general one
is easily seen to take the form

Y, —m¥ — O + gy, ¥

— Vg, +g )PP =0 (2.1)
or, in component form,

h/’z,g —my, — b0|¢’1|2¢2 - Co'/’f '7’2 =0,

(2.2)

i’/’l,n —my, — b1|¢2|2¢1 — a3, =0,
where

bo=2(g, —&)+c, =8 —8&s

by=2g +g)+cy €1=8 +&:

Here, ¢, stands for the complex conjugate of ;.

Remark: As will be seen later on, the sole subsystem of
(2.1) that will yield nontrivial results is the one for which
g, = g, = 0, i.e., when we restrict ourselves to current-pseu-
docurrent types of interactions. It might therefore be more
appropriate to refer to this very subsystem as the “extended
Thirring model.”

Lie symmetries of the system (2.1) can be found quite
easily. Let us first rewrite this system in the form

iy, —m¥=D¥=f(V¥),
and introduce an infinitesimal Lie vector field
X =a"tx)d, + clt.x), (2.3)

where the a’s are real functions and ¢ a possibly complex
function. As it is well known, the symmetries of (2.1) are
obtained by requiring that the following Fréchet derivative
vanishes identically:

D'(¥)[X]=0. (2.4)

Using(2.3)and subtractingaterm XD¥ = Xf(¥),(2.4)canbe
rewritten as the commutator relation

[DX] =fXV)—Xf(¥)

Replacing D and f'by their explicit expressions, this is then
easily solved for X. We find

X = (2Ax + 0%, + (24t + ")d, + (iw — 1Y)
=AM + 0°P, + o'P, + wE,
where 4,0°,0', are real parameters. It is then clear that (2.1)
is invariant under a group P (1,1) X U (1), where P (1,1) is the

3425 J. Math. Phys., Vol. 25, No. 12, December 1984

usual two-dimensional Poincaré group.

Now, as fas as discrete symmetries are concerned, it is
also clear that (2.1) has generally none save the trivial one.
However, if we set g, = g, = 0 or g, = g, =0, the resulting
subsystems are invariant under parity inversion and time
reversal, respectively.

lll. THE PROLONGATION STRUCTURE AND
EXISTENCE OF PSEUDOPOTENTIALS

Let us return to Eq. (2.2) and their complex conjugates.
These form a set of four equations which defines a differen-
tial system ZCJ '(M,C?), where J (M,C?) is described with
coordinate functions {x*;¢/,,%;, ¥ ,,, ¥, , }, with domain M,
range C?, and order one. In other words, it is the zero set of
the ideal I, of functions on J !(M,C?) generated by

F, = i'/’z,g —my, — bol'/’1|2¢2 - Co'/’%‘jz,
=i, —my,— A AR AR A
(3.1)
F= il_bz,g + ”“7’1 + boll/’1|2'z: + co'?’fllfz’
F,= i’pl,n + my, + b1|¢2|2'//1 + Cl'@‘/’l-
Moreover we notice that Z is a quasilinear-type nonlinear
differential system. This is enough to ensure that Z can be
replaced by an exterior differential (Pfaffian) system I, on
J %M, C*) ~ M X C*which hasexactly the same solution space

as that of Z. It is found that I, is the closed (differential) ideal
on J °(M,C?) generated by

o' =idy, NdE + (my, + b, ¥, Y, + 01%17’1)d§/\d77’

@ =idy, Ndn — (my, + by|¥, %, + cotft ¥o)dE Nd,

@’ =idy, Nd§ — (mi, + by|a)*¥, + c 2 ¥)dE Adn,

o' =idy, Ndy + (my, + bolt "4, + coti ¥,)dE N d,

o =dy, Ndx* — ¢, dx* Ndx”,

0" =dy, Ndx" — i, dx* Ndx".

Thus any feI” (M,C?) (i.e., the set of all U C M—C? mappings)
is a solution of Z iff (f'f)*I, = 0. Let us now apply the meth-
od of Wahlquist and Estabrook. First, we have to choose a
closed proper subideal 7 ;, CI,. We may select the one gen-
erated by {w'}} which, clearly, satisfies those requirements.
Our interest is to construct a Backlund map (not to be con-
fused with a Bicklund transformation as it will be defined in
the next section'®) for the system Z defined by (3.1). To this
end, we introduce a mapping y:J {(M,C?)x C"—J '(M,C")
preserving the local charts on M and C”*, and having the
(partial) local representation

yA,u =XA,y('/’i"zi’wi,v!;bi.v;yg),
where 1<4,8<n and u,v = 0,1. For reasons of simplicity,
we shall assume no explicit dependence on the independent

variables {x*} nor on { y*}. In order to completely deter-
mine y, we must now ensure that its integrability conditions
are equivalent to the initial equation (2.2). This will actually
be so if

¥ *d2 ' (M,CCI2 ), (3.2)

where
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I{2%(y)) = {3n; No'|w'e2*(y) and 7, is any form},

2%y ) =03 M,C) + 02 (M),
and

N4MN) = {0eA 'V “(M,N))|(jf)*6 = 0}.
For the sake of a compact notation, notice that we made the
following identifications:

X~m*y, QMO ~ity 2 MO,

QM C})~ S *2HM,C3),
where S,:J '(M,C?) X C"—J (M,C?) is the canonical projec-
tion on the first factor, and

(MG X C—J (MG X C{i )i fp)-
But how does (3.2) translate in local terms? Let 2 '(M,C")
have the basis =dy' —y*, dx*|1<A<n}. Writing

y*t=dy' — X dx“ and dy*04= —dy*, Ndx*,

(3 2)is then equwalent to the strict requirement that, for any

A, —dy”, ANdx* should be a linear combination of the
{@'}} and of the {y *0*} (under exterior differentiation):

dy*, Ndx* + H o
+ (K pcdy® + M“, dxH) A dy© — x€,dx*) =0,

where the{H,*, K*,., M} are functions. We expand
this explicitly and, using the linear independence between
the basis forms, we show that it is equivalent to the following
requirements:

)’A,g ZXA,g(’/’lﬂ?’l;yB),

and

[X,§’X.n] =

=1 ty®),  (33)

— "/\A/,&m (mi, + by, + ¢\ Y3 4)
+ ¥ ua (i + bo|t, [, + et )
+ e (M, + by 8,0, + ¢, P24
— W2 (M, + bolth [y + coli),  (3.4)

where y = y * 3 /dy". Can we integrate this? Using (3.3) and
computing the successive partial derivatives of (3.4) with re-
spect to the dependent variables ¥,,1,, we obtain the follow-
ing results:

2

where (p, q)e{z/zl,zzl} [1//2,17'2} We shall now make the fol-
lowing simplifying assumption: let us demand that X ¢ and
X.n lic in the Lie algebra sl (2,C). Considering sl (2,C) as a
three-dimensional complex Lie algebra, we know that
[X}, X,] = Oimplies either that (a) one or both of the X,’s are
zero, or that (b) one of the X,’s is proportional to the other.
Using this fact with (3.5), and (3.4) again, we deduce that the
most general expressions for y . and y , are

/{’,5 =P, + y,P, + P+ P+ |¢1t2i)4
+ PP+ ¥ 79,P + |¢1|2‘_ﬁ1137,
(3.6)
2= Qo+ 10, + 9.0, + 20, + |4:°0,
+ B.0s + [l ¥a0s + (4178205,
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where P, = P (y?)3/dy" and @, = Q0,4 (y®)3/9y".

Remark: It should be noticed, at this point, that the
method of Wahlquist and Estabrook yields, in general, infi-
nite-dimensional Lie algebras. Here we imposed a quite
drastic  closure condition by demanding that
b'¢ £ X »€81(2,C). Naturally this will imply that the prolon-
gation structure may not be as rich as it could be. Yet, inter-
esting results will still follow.

Our next step is to substitute (3.6} into (3.4). Doing this
and using the linear independence of the different powers
¥, "¢,°9,°, (3.4) resumes itself to a set of 64 commutation
relations to be solved for the P;’s and Q,’s. This set can be
reduced if we make the following further reasonable assump-
tion: 0, = o, P, ,0,€C\ {0] [this is motivated by the similari-
ties in (3.6)]. We thus obtain

[i’o,f’l] = — t'mi’,/a1 =
[P, pg] imli’z/a2 = imazi’2/a(,,
[P, P =im(l + 04)13‘4/02 =im(l + 04)134/01,
(P,P,] = —ibP /o, + 2imoP/o,

= — ibP, + 2imPy/a,,
[f’l,IA’S] = ic,i’z/a3 + im07i’7/05

— imo P,/ oy,

"U> "w

= icoazf’z/al + imi’7/al,
— z'cli’,/a3 — imaﬁi’(,/a3
= — icoall?’l/a2 — imIA’G/az,
[P,,P,] = ib,P,/5, — 2imo,P./0,
= ibyP, — 2imP, /0,
[Py, P,] = 2ilco0s — b)Py/a, = 2ilc, — boos)Py/ s
[P,P] = ilcouy + €,)Py/ 05 = ilcors + ¢)Py/ 03, (3.7)
(P,P5] = 2ilc, — boos)Ps,05 = 2ilcyws — by)Ps/a

[134’P6] = iboije = ibli’(/olu

[PoP)] = —iboP, = — ib,Py/0,

[Po.P;]
= [Py,P,] = [Py.Ps] = [Po,Ps] = [Py,P;] = [P,P,]
= [P,B] = [P,P)] = [P),P5] = [P,,P] = [P,,P,]
= [133’1’\)6] = [ijsj%] = [AS,Ps] = [Asyi)7] = [As»’\7]
— 0 R

m(l — 03)P3 m(l — o5)P; =0,

cOP6 = c,P6 =Py =Py =0.

We solve this in the following sense. It is not guaranteed
a priori that Z will possess a Bicklund map other than the
trivial one. Therefore we shall classify all subsystems of Z
(defined through restrictions on {b;,c; }) for which there ex-
ists a Bicklund map. In order to do that, the algorithm to use
is as follows. First, consider i’oz it can be either zero or differ-
ent from zero; both of these alternatives will reduce (3.7) into
smaller sets of commutgtion relations, each with additional
constraints on the g;’s, P,’s, ;’s, ¢;’s (we assume further that
m#0). We repeat these considerations with Pl, Pz, and so
forth, up to the point where all of the P s will be completely
determined within the algebra. The result is six classes of
subsystems Z; C Z, up to complex conjugations and various
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affine transformations on the {y*}. For a deeper classifica-
tion, we also used the fact that an arbitrary element of s (2,C)
is a conjugate, under SL (2,C), of either T, or aT,. Here, we
chose { T}, T, T,} as the basis of the algebra sl (2,C), with the

We thus have specified all the Backlund maps with their
corresponding subsystems Z; CZ. Here, we shall restrict
ourselves to y as being one or two dimensional. With respect
to this, consider the following realizations of sl (2,C):

following defining commutation relations: d d d
. TO ly B T }’2 T2 =3
[TOyT1]=lT1) d dy dy
- _ 1. d a
[ToT2] = —IT5, I, = _7’(%3—“‘}’28_),
(T\,T,] = 2T, Y1 »2
We now list representatives from these classes with their T,= —ip, 9 , T,= —iy, —.
corresponding field equations, where V1 dy,
a,8,€C, €0eC\{0}, 8€{0,1}, Te{TpaT,}; Also consider the corresponding forms for the Bicklund
- maps:
X =0 . d - d
X =0, Xe =J’,§E’ Xon =J’,n5;
e = mpy + (281 — 28, + 85 + 84l - P J - 3 9
- Xe=Vigm—t Ve Xy =Vipgo—+Vor—
+ (83 — 8V (3.8a) My ey, T Ty T gy,
iy, = m, + (28, + 28, + & — 8| Explicitly, (3.8) gives the follovx.fing one- and two-dimension-
- al maps (3.9) and (3.10), respectively. For the two-dimension-
A + (g3 + & ¥ al ones, weuse ¥ = [J! ]:
=5 T,
,l:,g 6 + |'/’1|2)T y:=0, y,=0, (3.9a)
(n =6= "”2';’ X 2 - ye=0+0i, v, =6 Bl (3.90)
Wag =mii t 26 =2t et e G805 s, =6+ 5F (390)
"/’1,1, =my, + (28, + 28, + &)|¥.|*¢ +g3¢§¢’1§ Vo= 1+ 511/,% + 6|1//1|2 + 521}% v,
X = (6,41 + 8, ¥1)T, Yy =(14+64; ‘6|¢2|2+521_b§)v’ (3.9d)
2 =6:85 +8,43)T, i (3.8¢) J",g = Uiy’ + 4ig’ |’y — g8,
e = m, + (g5 + )|t ¥, + (85 — 83 o, = Y3y" — 4ig, ||y — 48803, (3.9¢)
i’/’l,q =my, + (8 —84)|'//2|2¢1 + 18 +g4)¢/§¢1; J’§ =y’ —ilm/o— 2g, — g2)|'/’112]}’ +2mg,/o- Iﬁl,
/{’,5 =146, 47 + €|ty |* + 52‘%)71 Yy = oYy’ — ilmo —2(g, + &)\, "1y + 2mg1¢(2§ o
X =(1+8,45 —elhs|* + 54T, (3.8d) , ‘
. ) - where ve{ 1, ay};
ithye = myy + & |V *Y, + &3¢0 s, Y.—0 Y. =0 (3.10a)
. - L TV q .
i, =my, + Y, + ;
://1.17 '/’2 g3|¢2—| ¢'1 g3¢'§¢1 Y,g — (5 + ,l/}1|2)VY, Y,'q — (6 _ |l//2|2)VY, (310b)
— 2 - —
Xe =Ty — g8 i T + 45,9 To, Y, =60 +5,BIVY, ¥, = (6.4 + 8BV,
X =1//§T,—4g2g41//§T2—4g2|¢2|2T0, (3.8¢) (3-10c)
e =my; + (83 + 84 — 2gz)|¢1|2¢2 + (83 —84)‘%17’2’ Y, =(1+ 8¢ + 6|¢1|2 + 6,07 )VY,
i¢1,,, =m1/’2+(83—g4+232)|¢2|2¢1 + (85 -+—g4)¢§(7',; Y, = + 8.3 "6'¢2|2+52¢§)VY' (3.10d)
A - . 2 .
Xe =28, — &> —m/a1 Ty + 9, T, — 2mg, /o, T, Y, = [ __ZIgZI?II ._ i 2] Y, (3.10e)
Xm = [2(g, +g2)|¢2|2—m0] Ty + oy, T, +2mgl'7’2T2’ 4ggs¥i 2iga|th|
ill’z,; =my, + 2(g, —g2)|¢1|2¢2, (3.8) ¥y - [2ig2|1//2|2 ]
i, = m, + 208, + &) |¥a| ¥ T ldiggds - 21g2f¢2|
J
[fm/oc—2(g, — 2 —iy2
Y, = [%l[m o ' (& _gz)W’l' ] ' iV2mg,y, ] Y (3.10f)
— N2mg\ /o —4ilm/o —2(g, — g)|¥h|*]

Y = [% i[mo —2(g, + &) |¥,|*] — i2mg,o¢,

- i\lzmgll_bz
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—Yi[mo —2g, +gz)|¢2|2]]
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where

V-——[O, 0] or V=[_%ia 0].
—i 0 0 Jia

Before pursuing any further, let us make a few remarks.
It should be noticed that Bicklund maps may contain free
parameters and these may not always be indicative of Lie
symmetries of the initial differential system. In particular, it
is so for the last case in our classification where the free
parameter is o. There, the relevant symmetry which causes
the occurence of ¢ is rather a symmetry of the prolongation
structure, i.e., a symmetry of the ideal 2 *(y ).

Examining (3.9), we observe that the Bicklund maps
are all Riccati-type coupled systems, or restrictions of such
systems; this is naturally a consequence of the choice of
sl{2,C) as a prolongation algebra. We also observe that for
each Biicklund map the corresponding one-form in 2 '(M, C)
can be written as

O=dy—y,dé—y,dp=dy—w,—ay— oy’

Since our basis for sl (2,C} was chosen to be {d /dy, iyd /dy,
y’d /dy}, we readily see that any such one-form defines a
SL(2,C) connection of Cartan-Ehresmann type in the fiber
bundleJ ! (M,C?) x C with typical fiber C. Now the curvature
forms (components) of these connections, namely
2, =dwy, — v, Aw,, 2, =do, + 20, Aw,, and
{2, =dw, — w, Aw,, have the property to lie in the closed
ideal generated by {w'}}. This shows that our submodels
Z,CZ, described by (3.8a), are indeed to be associated with
the vanishing of SL (2,C)-connections in J '(M,C?) X C.

As for (3.10), we note that the Backlund maps are de-
fined through two equations instead of one. However, they
do present a nice feature in being linear in the fields. In parti-
cular, (3.10f) has a non-negligible importance. As its integra-
bility conditions, by construction, yield Z,, it therefore gives
us that pair of linear systems which could serve as a basis for
an inverse scattering transform type of problem, i.e., a Lax
pair; in particular, it we set g, = 0, this pair is exactly the one
which Kuznetsov and Mikhailov used when they investigat-
ed the classical massive Thirring model with the inverse scat-
tering transform formalism. !

We thus realize that the prolongation method is quite
rich in content. In addition, it can provide us with conserva-
tion laws which might not appear evident from a superficial
examination of Z;, as we shall soon see. Besides that, the
Bécklund transformations which they may furnish can also
be very useful, in their turn, by inducing quite nontrivial
solutions.

Let us come back to (3.8) and {3.9). We shall examine
them case by case (i.e., a to f) and interest ourselves with
(pseudo-) conservation laws which may possibly be obtained
from them.

(a) Trivial case: arithmetic numbers are conserved.

(b) If v=ay then apply a transformation p—e®.
Now, [d,,d,ly=0 implies that (|¢,|* + )7,

+ ([#1* = |¥2/%).« = 0. Hence we have a conserved density
Srli]? + |¥,))dx = [ P TWdx and a conserved flow
Se(l¥1)> — ¥, dt = SR P TY°Wdt  (provided, naturally,
that these integrals converge to some finite values).
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(c) Here, the conserved density is fg(¥2 — ¢)dx
= (g ¥ 7Y’ ¥ dx and the conserved flow is fg(¢¥? + ¢2)d?
=g WWdt

(d) In this case, the conserved quantities are those of (b)
and (c).

(e) Here, we get pseudoconserved quantities (though
“disguised” conserved quantities would be a more appropri-
ate term). The pseudoconserved density and pseudocon-
served flow are

f (4ig, V¥ — TV W + 4g,g Wiy W *}dx,
R

f (PTwy® — 48,0, W O * _ 4ig, ¥y Wyldr.  (3.11)
R
(f) Similarly, the pseudoconserved quantities are

fR (i128,(|6]? — 9]

+ 28([¢a)? + 1) + mlo — o)y
+ (¥ — U¢2)J’2 - 2mg1(@_02 - 0'_127/1)}dx’
(3.12)

fﬂg — i[2g1”1/’2|2 + |¢’1|2)

= 28(l¢,1* — [#]*) + mlo + 071y
+ (¥, + o) + 2mg1(122 + 0_117/1)]dt.

Naturally, (3.11) and (3.12) are not really true conserved
quantities, according to the usual meaning. However, they
do become so from the moment that the pseudopotentials
“y’s” are explicitly solved in terms of the fields. It is some-
times possible to generate true constants of the motion, in a
local sense though, when the Biacklund maps do involve a
free parameter. This is so for the case (f), when g, #0. To get
those quantities, let us first modify the Bécklund map by
dividing (3.9f) by v2mg,A ~',A? =0, and by applying a
transformation p—iy2mg,A ~'y. The Backlund map then
can be written

Ye= —iN2mgd Ty’ —ilmA 77 —2g, — &))l¥ [y

+ iV zmgl’{ B 1;&1’
(3.9F)

Y, = —N2mg Ay’ —ilmA? —2(g, + &)|¢,|* 1y
+ iN2mg A,

Solving for y and eliminating |1, |%,|#,|* with the field equa-
tions, we get

iz ({¥p)e — iA _1('/’;)’),7, = V2mg, (¥, — ¥,¢y). (3-13)
Assume then that y is an analytic function of A in some open
set which contains A = 0. This allows us, by definition, to
expand y in a power series with respect to 4; in particular, we
may choose this expansion to be

y=3 pA¥r

k=0
We substitute this into (3.13) and get

(3.14)

Daniel David 3428



ik:){/l 2y )e — A W), )
= Vzmgl('//l'Zz - 121'/’2)-

Observe that all the powers of A are even ones. We thus
obtain, for all £ ’s,

Wi)e — WWii1)y, =0
and a defining relation for y,,

—iYw,), = \lzmgl('ﬁﬂ?’z - '7/1¢2)~

This yields the conservation laws

WV — i) + WPk T ¥Dh 1) =0;
therefore the following objects are conserved quantities:

G = fﬂ (Ve — Y41 )dx.

To obtain these, we begin by expanding (3.15) and by replac-
ing ¥, ¢, ¥, ,, in this with the help of the field equations. We
then expand iy , into a power series. The results are expres-
sions for y, in terms of the fields only:

Yo =m~'\2mg ¢,

Y1 =im™2mg [ 6, + 2ig, |19,

¥y = —m~\2mg,[d; + 2ilg, + £)|th|?]
X [8¢ + 2igs|t* 19,

¥y = —im™2mg,[8; + 2i(g, + &,)|th[*]?
X[d: + 2igz|¢1|2]17’1’

(3.15)

(3.16)

Ve =m7 28 — @i 1 i)

k—1
—v2mg, z yjyk—j—l]’
i=o

From this, we immediately get the following local conserved
densities:

Co =fR{ 'lef’z —im™[d¢ + 2"gz|1//1|2]iz1}dx,

c, = f {2[0, + 2igo |1,
+m~ Y, [ag + 2i(g, +82)l¢1|2]
X[ + 2ig2|l//1|2]‘1721}dx,

c, =fR{¢2[a§ + 2ilg, + &)|% ]

X [ag + 2’.82’!51'2]';1 - im_l'/’l
X [dg + 2ilg, +g2)|¢1|2]2[8§ + 2ig2|1//1|2]1_ﬁ,
—2m~ g} [(de + 2ig2]¢1]2)17/,]2}dx,

Covr = [ {2t~ Lo — v ]

+i[Vpee — VYW e]
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k
- \/2’"81'/’1[ Y Vivi;
j=o0
k—1
- zyjyk—j—l]]dxy
ji=o

Remark: One can also suppose that y is an analytic
function of A ~! in some open set containing A ~' = 0. This
will imply another infinite family of conserved densities
which, this time, will be expressed in terms of ¥,, ¥,, and
derivatives of these with respect to 7. A direct consequence
of such families is the complete integrability of the subsytem
Z,.

IV. THE BACKLUND PROBLEM—OBTAINING
BACKLUND TRANSFORMATIONS

A method for solving this problem has been suggested
by Wahlquist and Estabrook in Ref. 8. We shall follow a
similar path but use a differential formulation instead of a
Pfaffian-like one. What we shall look for, actually, are map-
pings F: C?XC—C? with local representation ¢,
= F,.(I/Jj,x_ﬁj :,y) such that & is a solution of Z, whenever ¥
itself is one. Crudely put, the method is as follows. We first
assume that ¥ (£,7) does exist and require that it satisfy Z;
whenever ¥ (£,17) does. We then substitute the 129 ,1Zj into(3.9).
Finally we demand that the differential system thus obtained
for F (¥ ) be an identity in the old variables ¢;, ¥,. This will
give us a set of conditions which, if solvable, will yield a
Bicklund transformation. Let us recall the field equations:

ithy e = myy + bo|th, ", + coth? 7

. - 4.1
‘¢1,n =m¢2+b1|¢2|2¢1 +Cl¢%¢1- @.0)
A Wis also a solution, then
i'?’z,g = ”"Zl + b0|'2'1|2'2’2 + Co'?’% '7’2’
4.2)

i{bl,q = ”"7’2 + b1|'7’2|212’1 + C]‘Z%{bl'
For the sake of simplicity, we shall further assume that ¥ is
of the form

b, = TN, + TP,
¥, =PI, + q.).

Using this and (4.1), (4.2) becomes equivalent to this other
pair:

e = Plm, + bl |0, + cot? )

+ i Pepy +Veps) + iV cq, + P ed5)

=m(m; +7) + ¢ [ﬁ”zlﬁ% '2’2 + 21_777'7'1/’1'7’2

+ D7, + 3T + 2 + G

+ bolp| T, + TR, + PETYY,

+ 2|71, + qla |9

+ g7y + g7, + ql7[’], (4.3)
i,y = mlmiy + 19,20, + c 34,

+ YTy + Ty T+ T,y + T Ts)
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= m(py, + q) + ¢, [P*TY5 + g,
+ @7, + P + 2pg7Y; + 4°F]
+ b1 [Pt 4] + pgm ¥, +1_7477’¢1‘7’2
+ lal*my; + |p|*r9.|

+pgry, + pary, + |q|77].

In these expressions we replace they . and y ,, from (3.8). For
all subsystems, save Z, with g, 70, we are rapidly lead to the
same trivial Backlund transformation: ¥ = ¢®¥, #cR; we do
not learn anything new from this (we already knew this sym-
metry). For Z,, however, things are different. Equations (4.3)
transform into a system of 16 equations to be solved for
p.q,7,7, and their derivatives with respect toy, y. It proves to
be indeed solvable and we find a nontrivial Bicklund trans-
formation B (1 ):C2 X C—C2:%—W, which can be explicitly
written as (1 % = o)

b =C _'f+1lyli]m'
A+ Ayl
X[Z-‘+/j“|y|2 1 mA 2~ ]
AN ATy V2mg, (A ~' 4+ 2 "y
. A7 [y|? 1ers: 44
i=c| 22k
A+Aly
[Z+/1|y|2 mA? —A%p ]
A+ V2mgA + 1|y} ’

where |C |> = 1. One may verify that ¥ is indeed a solution
simply by substituting (4.4) in the field equations (3.8f). Asa
special case, notice that if we set g, = O, then (4.4) reduces to
the usual Bicklund transformation for the classical massive
Thirring model as mentioned, for instance, in Ref. 6 (upto a
misprint of ¥ as y). N
In this procedure that we just completed, we required ¥
to be linear in ¥. We could have done otherwise and de-
manded that it would rather be linear in ¥ *. As a matter of
fact, the relationship between % and ¥ * is quite nice. To
obtain it, recall (3.9f’) and its complex conjugate that we
multiply by ¥, y, respectively. Eliminating |¢, |*, we get

|2, = iV2mg,[(A + A |y,

— (A + A Pl — imd? =23y
WI?e = 2mg [(A =" + 4 =" y|*5¥,

— A7+ A7 ]

—im{A 72— A 3y

In this we replace ¢, ¥, as we obtain them by inverting the
Bicklund transformation (4.4). This yields quite simple iden-
tities:

wI*, = i2mg,(4 + 4 [y[?)

= A+ 4?2 ]gz/g' ~ ]
X — C ! —_— ,
{J’% A+ A 123
| e = i2mg, (2 ~' + A 7 Hyl?)
- _ Z+ﬂ|y|2]gz/gl ~ }
X -—-C l[—'—_—— .
[Y¢1 A+ AP 1
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For the classical massive Thirring model (g, = 0), with
C = 1, these identities do assume a very compact form:

W%, = i2mg,(A + A |y|2\ 3¢, — yib,),

Wl e = i2mgi (A =1 + 4 7PN 3, — yiby).
These identities could be useful, amongst other things, for
establishing recurrence formulas in view of obtaining chains
of solutions.

V. SOLUTIONS OF THE MODEL

Naturally, the very next thing one would like to do is to
see what kind of solutions this transformation gives rise to.
Let us consider the trivial solution ¥ = 0. In this case, (4.4)
simply becomes
A @ +A -

= -
E+ApPIA P ]
= C[AtADE] _mia’
,=C|= — .
A+APL amga + 21
and the Bicklund map (3.9f ') gets reduced to

We=mA "%, iy, =miy.

Up to a multiplicative complex factor, the solution to this is
y =exp(—im(A 726 + A 7q)),

with
|? = exp (im(A > — 22)(§ — |4 |*n)/ |4 |%).

We want to decompose ¥ into its real and imaginary parts.
In order to do that, we set A = u + iv. After many tedious
calculations, we find that

Re('?’z) _ 2muv[ — u sin B cosh @ + v cos S sinh w] ,

V2mg,(u® cosh® @ + v? sinh? )
2muv|[u cos B cosh w + v sin B sinh w]

Im(y,) = ; —— (51
V2mg,(u® cosh® @ + v* sinh? )
l? = 2mu*vi/g, ’
u? cosh? @ 4 v sinh? @
Re(f,) = 2muv[u sin B cosh @ + v cos A sinh o]
U 2 + v amg, (u? cosh? @ + 2 sinh? o)
Im(:?!,) _ 2muv|[ — u cos B cosh @ + v sin B sinh w] . (5.2)

(u? + v*W2mg (u? cosh? @ + +* sinh® w)
|¢1|2 = |'/’2|2/(ﬂ2 + Vz)z’
where
B=a+68, C=é-,
o= —2muv[§ — W + V) / W + VP,
m(.uz - Vz) 2
6 ="V =V g 4240
WP [§ + m]
4 (&) tan_‘[ 2(v/,u)t2anh a)2 .
g 1 — (v/u)* tanh* @
In order to best visualize the form and the evolution of these
quantities, let us set
&= 1,
(i.e., a =0),

m = %a 82 = 2’
Cc=1 A=1+2i
Figure 1 illustrates the behavior of Re(,), Im(g,), and ||
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= IM(5)

FIG. 1. The behaviors of Re(%.}, Im(s},), and || for a few distinct values of time.

for a few distinct values of time [Re(i,), Im(¥,), and |¢,]
behave in an analogous manner].

Again, one may verify that (5.1) and (5.2) do indeed
constitute a solution merely by placing them into (3.8f). Let
us now make a few remarks on this solution. First, we notice
that |¢;)? is a function of the single quantity o and thus is a
nondispersive traveling wave, localized, with a constant ve-
locity given by

U_(,u2+1f2)——1= r—1
W+l P4t

Now, as A€C\ {0}, then r€[0, co); therefore |¢,|? is to be con-
sidered as an “infraluminic” object, for v: [0, 00 }—{ — 1,1)
(i.e., the limit speed is “1”” natural units). If 4 stands on the
unit circle, then » = 1 and v = 0: therefore the lump-shaped
|#;|¥’s remain still! If it is inside or outside of the unit circle,
then they have negative or positive velocities, respectively
(for our numerical example, v = 2/3 in natural units). More-
over, note that v(1/r) = — v(r). It is also possible to define a
quantity which could be interpreted as a measure of the (fin-
ite) energy of the solution, namely,

= tanh[In(r)] = v(r).

m___mr+1)
JI1=0 2r

If we now look at the fields themselves (the components of
v ), we first notice that they are bounded, in absolute value,
by their norms (the lumps). We then remark that they are
sorts of oscillating functions. This is a characteristic behav-
ior which is reminiscent of the soliton solutions of the cubic
nonlinear Schrédinger equation. Still there is an important
difference. For the Schridinger equation, the solitons are
oscillating with a fixed frequency since they are of the form

¢ = a\24 /vsech[a(x — 2bt)]exp[ibx + iA (@* — b )t ]

(forAd .. + id, = v|¢ |? with Av < 0), whereas our solutions
for the extended Thirring system are not oscillating at such a
fixed frequency. The reason for this lies within the form of 8
which involves a peculiar dependence on w. However, for the
classical massive Thirring system, this dependence vanishes
and the solutions are thus much more like those of the non-
linear Schrodinger equation. It may be worth mentioning
that this peculiar oscillating behavior reminds us of that of
the so-called “boomerons” introduced by Calogero and De-
gasperis.'?

A pertinent question that we may now ask ourselves is

E =

= E(r).
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whether or not the solution which we obtained should be
termed solitons. A first remark it that according to the dedi-
cated definition they should not even be called solitary
waves. Yet, it remains that they are localized and nondisper-
sive, in a certain sense, functions. However, to label them as
solitons is a bit problematic. Indeed, before doing so, one
should formally look at, and analyze, their interaction with
other objects of a similar kind. Put in other words, this
means that one should explicitly construct two-lump (or
“multilump”’) solutions. At present, it has been impossible to
do so. Actually, the tools which we gave ourselves here prove
to be inefficient for such a construction. First of all, it it
obvious that the Backlund map (3.9f’) cannot be used for
deriving a superposition rule since the pseudopotential y is
one-dimensional whereas ¥ has two components. Moreover,
it appears that it would be rather difficult, if it is at all possi-
ble, to verify if the Backlund transformation commutes with
respect to an interchange of parameter values, i.e., if
B(A)oB (u) = B (u)oB (4 ). In the same spirit, the two-dimen-
sional Backlund map (3.10f ) does not seem to yield a Béck-
lund transformation other than the trivial one. As an alter-
native way out, one could consider a repetitive utilization of
the Backlund transformation (4.4). We performed a first step
by applying it to the solution ¥ = 0; the second step would
consist in feeding (5.1) and (5.2) back into (4.4) and (3.9f "),
and then to solve this latter system. It is immediately evident
that this is a most difficult vector Riccati system. Finally, a
third way out would be to make use of the inverse scattering
transform formalism, since we already have the necessary
basic linear equations (or Lax pair) which are needed for that
purpose, namely (3.10f ). Technically speaking, this should
appear to be a viable way. Actually, comparing our Lax pair
to the one used by Kuznetsov and Mikhailov,!! one should
discover that the direct scattering problem is exactly the
same as theirs (up to a redefinition of parameters) and there-
fore the quasitotality of the formalism remains unchanged;
the only minor difference is contained in the fact that the
scattering data will evolve according to a slightly different
equation. An additional argument which also tells us to push
along this line is the following fact. Using the symmetry re-
duction technique described in Ref. 13, one can obtain ordi-
nary differential equations which are exact reductions of the
system Z, given by (3.8f) and to show that these have no
movable critical points [i.e., movable singularities other than
poles {of any order))], hence to show that they have the Pain-
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levé property. This property can also be established in a
more direct manner from (3.8f ) without any reductions by
using the technique recently proposed by Weiss.'* Accord-
ing to the Painlevé conjecture,'” this property is a necessary
condition for the solvability of (3.8f ) by an inverse scattering
transform.

VI. CONCLUSION

We introduced a nonlinear system which contains the
classical massive Thirring model as a special case and pre-
serves relativistic invariance; in fact, this system is invariant
under a Lie point group P(1,1) X U(1). Having constructed a
prolongation structure associated with this differential sys-
tem by using the method of Wahlquist and Estabrook, we
succeeded in breaking the system into a family of subsystems
classified with respect to the different types of allowed Bick-
lund maps. Among these, one stands out of the ranks and
prove to be quite interesting; it is the restriction of (2.1) to the
current-pseudocurrent case (i.e., g; = g4 =0, g,#0), a sort
of natural extension of the Thirring model. Actually, onecan
show that, in a certain sense, it is gauge equivalent to the
Thirring model.'¢ In this particular extension appears a free
parameter (o or A ) which is very important. It was mentioned
that it takes its origin as a symmetry of the prolongation
structure; to be more precise, it is indicative of a Kac—-Moody
symmetry algebra connected with the Zakharov-Shabat (or
Lax) pair (3.10f). Because of this parameter, we were able to
generate an infinite family of local conservation laws, thus
establishing the complete integrability of the corresponding
subsystem. We also deduced, from the Bécklund map, the
Lax pair of linear equations which is the basis of an associat-
ed inverse scattering problem. Finally, we constructed a
nontrivial Biacklund trnsformation which we used in order
to show that the subsystem does admit some sort of solitons
as possible solutions. One-soliton solutions were explicitly
computed.

Let us end by mentioning a few points which merit a
deeper investigation. First, we must point out that the pro-
longation method, though it is very nice from the practical
point of view, may not yield the most general Backlund map.
For this particular purpose, one should ultimately prefer the
method devised by Clairin,'” or even follow a procedure re-
cently proposed by Denes and Finley.'® Along the same
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lines, for this model, as well as many other two-dimensional
completely integrable ones, Backlund transformations are
not exactly the right kind of objects to look for, especially if
we have in mind to construct soliton solutions. Rather, one
should try to build so-called multi-Bicklund transforma-
tions. This is the object of Ref. 16 in which multisoliton solu-
tions will be explicitly constructed for the Thirring system
and other systems which are gauge equivalent to it, using the
Zakharov-Mikhailov—Shabat dressing method.
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New Landau-Lifshitz (LL) and higher-order nonlinear systems gauge generated from nonlinear
Schrédinger (NS) type equations are presented. The consequences of gauge equivalence between
different dynamical systems are discussed. The gauge connections among various LL and NS
equations are found and depicted through a schematic representation.
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I. INTRODUCTION

In recent years growing interest has been focused on the
discovery of gauge connection between various nonlinear
systems. ' Such interconnections allow us not only to sys-
tematize and group together the large number of nonlinear
systems already known, but also to conclude about the prop-
erties of a system knowing the corresponding properties of
its gauge-equivalent counterpart. One of such gauge-con-
nected systems which deserves much physical interest is the
Landau-Lifshitz equation (LLE) and the nonlinear Schro-
dinger equation (NSE)."? Recently, the above equivalence
between LLE and NSE has been generalized for higher uni-
tary groups,® for Grassmannian manifolds,® and for non-
compact groups,® and has been extended also to uncon-
straint SU(V) models.® Besides the standard NSE, however,
different other types of integrable NSE systems are known in
literature.'®' Our aim is to find different generalized Lan-
dau-Lifshitz equations which are gauge equivalent to them.
New higher-order nonlinear systems are also obtained
through U(1)-gauge transformations of NS type equations.
Since the proposed nonlinear equations being gauge equiva-
lent to integrable NS systems are also integrable, they might
be useful in approximating quasi-one-dimensional real mod-
els.

The paper is organized as follows. In Sec. I1, the conse-
quences of the gauge equivalence between different systems
are discussed. In Sec. I1I we deduce new Landau-Lifshitz
type systems. Higher-order nonlinear equations are found in
Sec. IV. Using the gauge freedom of LLE relative to sub-
group HC G it has been shown in Sec. V that all H-trans-
formed NSE are also gauge equivalent to a given LLE. This
section also presents a schematic diagram showing the gauge
connection between all the different systems proposed. Sec.
V1 is the concluding section.

Il. GAUGE EQUIVALENCE OF NONLINEAR
EVOLUTIONARY SYSTEMS

We discuss in brief the Lax pair formalism of nonlinear
evolutionary systems and how to construct their gauge-equi-
valent counterparts. We have the given evolution equation
Lq Owith L being a nonlinear differential operator acting
on field ¢. The linear problem associated with the given sys-
tem may be expressed as

* Present address: Physics Division, Birla Institute of Technology and
Science, Pilani 333 031, Rajasthan, India.
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dv=, (2.1a)

where d denotes exterior differentiation, {2 is a 1-form ma-
trix valued on the Lie algebra of some matrix group G, and v
is the matrix O-form. In (1 4 1) space-time, Eq. (2.1a) in the
component form looks as

S . =UD, & =V, (2.1b)

where the Jost function @ and U and ¥ are complex matrix
functions of the field g, its derivatives, independent variables
x and ¢, and the spectral parameter A. The integrability of
(2.1a), which is equivalent to the flatness condition, requires
that the following two-form 6 should vanish:

0=d02—-02N2=0, (2.2a)
where A denotes exterior product. In component form the
compatibility condition @,, = @,,, which is equivalent to
(2.2a), is given by

U—-V,+[UV]=0. (2.2b)
Here, U and ¥V operators are so constructed that the original
nonlinear evolution equation is represented by (2.2b), which
may also be expressed in the Lax form

L =[4,L], (2.3)
with L® = AP and @, = AD.

Now for real A, @G, G being a compact or noncompact

Lie group, and under the local gauge transformation relative
to the group element

gixt o) = P (x,50), -, €6, (2.4)
the Jost function changes as
DY (x,5A40) = g x,54,)P (x,t4 ), (2.5)

and the corresponding linear system associated with the new
Jost function can be given by

v, =UV¥, ¥,=V'V, (2.6)
with
U'=g 'Ug—g g, =g (U~ Uy,
(2.7)
V=g 'Vg—g g, =g '(V-V,g,
since
88 '=Uy=Ul|,_, and gg '=V,=V|,_, .
(2.8)

The compatibility condition of (2.6) gives now the new
gauge-equivalent equation
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Ur=v.+I[UWV]
=g (U ~ V. +1UV])
— (Uoe = Voo + [UsV,])}g =0,

relative to a new field S: 2 'S=0, 2 ' being some nonlinear
operator acting on .S. Note that gauge transformations like
{2.4), but depending on the spectral parameter A, may also
construct Backlund transformation'® generating new solu-
tions from the given one, for the same evolution equation.
We are however interested only in those gauge transforma-
tions (depending on A, but not on A ) which yield new nonlin-
ear equations different from the given one.

If all the properties of the initial model are known to us,
it is interesting to ask whether it is also possible to find the
corresponding properties of its gauge-equivalent counter-
parts. We find that the answer is affirmative in most of the
cases. Let the scattering matrix 7 of the initial system be
given by

¢ _=90.T,
where @, P _ are known Jost functions with their asympto-
tics given at 4 oo, respectively. Then it is not hard to get

that the scattering matrix of its gauge-equivalent system
should be given by

T'= WIIW.. =¢ :lg+g:l¢_

(2.9)

=(7'g, T 'g7'P.)T,
with Ty=T(A=4,). (2.10)

Hence, knowing T and @, one can easily calculate 7' and
¥ which, in principle, should give all main properties of a
system. Thus, knowing the soliton solutions of the initial
system, one may deduce such solutions for its gauge-equiva-
lent counterparts and the complete integrability property
should also be common for all the gauge-connected systems.
If, for example, we suppose NSE to be the initial system
about which everything is known, then using (2.10) it is pos-
sible to evaluate the properties and solutions of its gauge-
equivalent LLE without investigating the latter system indi-
vidually. The field function S of LLE type equations may be
expressed through the Jost function of NSE at A = 4, (2.4)
with G = SU(2) as

S=g 'og, (2.11)
which due to (2.8) gives immediately
S, =g 'o,Uyg and S, =g '[o,,Volg. (2.12)

As we will see below, relations (2.11) and (2.12) are very im-
portant for constructing explicitly various LLE systems. All
the new models we discuss here are gauge equivalent to dif-
ferent NSE which are already well investigated. From rela-
tion {2.10), one gets also the somewhat unexpected result
that the “pure soliton” states in one system (i.e., with reflec-
tionless potential, » = 0) may not always give a pure soliton
state (i.e., b #0) in the gauge-transformed system. We like to
stress here that usually A, is taken to be trivial.” But, in gen-
eral, A, = 0 and it must be chosen from the continuum spec-
trum of the Jost function such that g(x,%4,) should have
fixed group properties for all x and .
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lll. GENERALIZED LLE TYPE EQUATIONS

Using the general method sketched out in Sec. 11, we
find different LLE from NS type equations.

A. Gauge-equivalent LLE and NSE

Gauge equivalence between standard NSE of the “at-
tractive” type and the LLE with the associated G = SU(2)
group has been established."* Analysis of the property of the
Lie algebra corresponding to group G to which the Lax oper-
ators U,V belong, allows us to extend the above equivalence
in the following way.® The attractive and repulsive type NSE

ig, + 4. £Blal’¢ =0, B>0, (3.1)
are gauge equivalent to LLE,
S, =(/2)[88,] — W28 A5, , (3.2)

with SeSU(2)/U(1) and SeSU(1,1)/U(1), respectively. Here
A, may be chosen to be trivial for an “attractive” type equa-
tion with vanishing boundary condition lim,_, , _ |g| =0.
For a nontrivial boundary condition, lim, , | _ |g| =u#0,
corresponding to the “repulsive” case, however, |4,| > u due
to the appearance of a gap in the continuum spectrum of A
{see Refs. 7 and 8). Note that the term proportional to A, in
(3.2) may be removed by the Galilean transformation
(x',t") = (x — 4y 23 Agt,t), i.e., with respect to a reference
frame moving with a velocity v, = — 428 A relative to the
original system. It is therefore clear that the soliton velocities
of NSE and standard LLE may coincide only for vanishing
boundary problems when A, may be trivial, but they differ
for nontrivial boundary conditions when A4,50. In what fol-
lows, similar to (3.1) and (3.2), the “ + ”* and “ — ” signs in
NS type equations will always correspond to LLE with com-
pact, i.e., SeSU(2)/U(1), and noncompact, i.e., SeSU(1,1)/
U(1), manifolds.
B. DLL gauge generated from DNS

The derivative nonlinear Schrodinger equation (DNS)'°

g + Grx ila(IQ|ZQ)x =0, a>0, (3.3)
may be given by the linear system (2.1) with

U= —iad%0,+ald,

V={(-=2ia’A* + ia?|q|*A o3 + 2a°A 4 + aAB,

(3.4)

where

0,ig, - alq|?
A=(_O’ q), B=( q.+ Iqr|f12 ) 35)
Fq*, 0 + ig¥ + alg|°q*,0

Under the gauge transformation (2.5) the linear system
(3.4) changes to the form (2.7) given by

U= —iad?—A2)g log + ald — g '4g,
and
V= —2il%2A* —At)g  loag + 20% A3 — A )g 'Ag
—iad At —A2)g oA g +ald —Ag)g 'Bg. (3.6)
Using now (2.11) and (2.12) for explicit values (3.4), one
gets with no difficulty the relation

S, =248 '[034 g = 2408 ‘0348, (3.7a)
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SS, =240 'Ag, (3.7b)
—8S?2 =412a%g " '0,4%, (3.7¢)
and
S, =2a°A 38" ' [03,4 18 + akg” 'lo3,B g
=2aA}S, +2ai,8 '0;Bg. (3.7d)
Hence,
S(S, — 2aA2S,)=2ad,g 'Bg. (3.7¢)
Putting relations (3.7) in (3.6), we get finally
U'= —ialA? = A2)S + (1/24)4 — Ao)SS, ,
V' =2ia%A* — A4S + (a/AgA* — A 3)SS,
+1i AT Ab ss2 42 —4 (SS, — 2a4 2SS.).
412 21,
(3.8)

The compatibility condition of (3.8) yields the LLE type sys-
tem named the derivative Landau-Lifshitz (DLL) equation
for definiteness:

1 1
+ = S’Sxx
2 [ ]

—4ah S, +

=S 1=0, a>0,

0 (3.9)
with $eSU(2)/U(1) [SU(1,1)/U(t)] corresponding to + { — )
signs in (3.3).

C. MLL gauge generated from MNS

The mixed nonlinear Schrodinger equation (MNS),
which is a hybrid of DNS and NSE, is given by

ig, + 4. £ B1q°q L iallg)’q) =0, «>0, B>0.
(3.10)
The corresponding linear system (2.1b) has
U=i{—al?*+ 2B A)o;+ (@i —B/2)4
V=] —2id®A* + 4iaJ2B 1> + (— 4iB + icd®|q|)A ?
Fiaf2B 21qf £ LBl
+ (20243 —3J2B aA? +2BA)A + (ad — B /2)B,
(3.11)

where operators 4 and B are given by (3.5). Similar to the
previous procedure we find the gauge equivalence of this
system. The gauge-transformed operators are

U'=g '60,+adlg,

V'=g '{ko; + bA + aB + yo,4%)g (3.12)
where
= —ialA? —A3) + W28 (A = Ay),
a=all —4,),
kK= —2a’A*—A3)+ 4iay2B (A° —
— 4B =12, (3.13)
o= +224 A% —A3)—3ay2B (A% —1})
+2B(A —4),
y= —iadd? =A%) +ia2B (A — Ay .
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From (2.11), (2.12) for (3.11) one gets

= (c/2g '[03,4 1g =cg”'0:4g, (3.14a)
SS. =cg 'dg, (3.14b)
—S8S2=cg oA %, (3.14¢)
S, =2(b /c)S, +cg " '0,Bg, (3.14d)
hence
S(S, —2(b/c)S,)=cg 'Bg, (3.14e)
where
c=2al,—26 ,
and
b= —b(A=0)=2a%4} —3ay2B A% + 264, .(3.15)
Using relations (3.14) from (3.12) we easily obtain
U’ =68+ (a/c)SS, , (3.16)
v =ks+2ss, — Lss 4 (SS —2bss)
‘ ‘ {3.17)

which gives ultimately the gauge-equivalent generalized
LLE [we call it the mixed Landau-Lifshitz (MLL) equation]

S, +(€/20[S,S,] + (45, +pS3)

+id[[S,,SX] +l.[SSx,SXX]] =0, (3.18)
i
where
€e=B/A, y=C/4, p=D/A,
d=E/A, e=F/A, (3.19)
with

A= (a’A2 —20A2B )/(c/2) +V28 ,
B=2{( —B—=3a* A28 +2a%A3}/c?,
=2{\2B (22’43 — 2J2B A28 — 2aA,))
—2a°A ¢ + (2b /c)2aA 2B — a?A 2)} /¢, (3.20)

D= —alJ28 —aly)/3,
E=F=aJ28 /.

In (3.18) the case SeSU(2)/U(1) [SU(1,1)/U(1)] corresponds
tothe + { — ) type of Eq. (3.10). From (3.14) one can find also
the generalization of the energy and current density relations
between the LLE and NSE systems in the form

tr(S2 ) = + 2¢%q|?, (3.21a)
and
tr(S,.S,) = ¢*{ Filag¥ — q*q.)
+ #b /c)lg” — 2alq|"} . (3.21b)

It is evident that for the particular choice @ =0, 8 #0 we
may recover from (3.21a) and (3.21b) the well-known rela-
tions due to Lakshmanan.’

The parameters in Eq. (3.18) are simplified in the fol-
lowing particular cases:

e=1, for a=0, B#0 and a#0, f=0,

_[+4-‘/2B10, for a=0, B#0, (3.22)

| —4ai?, for a#0, B=0, '
A. Kundu 3435



0, for a=0,

B #0,

p= L, for a#0, B=0,

dall
andd =e=0forbotha =0, #0and a#0, 8 = 0. Note
that the case @ = 0, B #0 yields standard NSE (3.1) from
MNS (3.10) and similarly a0, 8 = 0 gives DNS (3.3). It is
also immediate from (3.22) that MLL (3.18) reduces succes-
sively to LLE (3.2) and DLL (3.9) in these respective cases.
The energy and current density relations (3.21) are also sim-
plified accordingly.

D. MDLL gauge generated from MDNS

The modified derivative nonlinear Schrodinger equa-
tion (MDNS) proposed in Ref. 12 is given by

g, —ilg/P)x =0, ®=(1%]q})"?, (3.23)
which corresponds to the linear system (2.1b) with

U= —iloy+ 44,

V=21°D+AB, (3.24)

where A4 is as in (3.5) and

0, lg/P), ) ( -1, q)
B=1i , D=¢ ! . {3.25
l(i(q*/‘p)x,o +qr, i) B

Repeating the above procedure we get the gauge-trans-
formed operators as

U'=A—Ag '{—io; +4]}g,

V'=g {247 —A3D+ (A —A)B)g. (3.26)
From (2.9) and (2.10) we deduce the relations
SS, =24,¢7 '4g, (3.27a)
(1/240)8 (S, — 24¥S,) =g~ 'Bg,
x=(14+1tr(S2)/842)" "2, (3.27b)
and
XS ((1/240)S, — i) =g~ ' Uyl — tr(U3)/2)" g =g~ 'Dg..
(3.27¢)

Where the relation D = Uy( — tr(U2)/2)~"/? has been used.
Using (3.27) we get finally from (3.26)

U' =4 — A —iS + (1724,)SS,),

V' =242 —A2)¥S((1/240)S, — i)

+ A —AS (S, — 241 S: )/ 24, (3.28)
which yields the following modified derivative Landau-Lif-
shitz (MDLL) type equation gauge equivalent to MDNS:

S, =iy SS,)x + 4xS, (3.29)
with SeSU(2)/U(1) [SU(1,1)/U(1)] corresponding to + ( — )
signs in (3.23).

IV. HIGHER-ORDER NS TYPE SYSTEMS

We show that from nonlinear Schrédinger (NS) type
systems one may generate through U(1)-gauge transforma-
tions some new higher-order nonlinear equations, which will
also be integrable due to their gauge equivalence with inte-
grable NS systems. If we start with the MNS (3.10), then it is
not difficult to find that under the U(1)-gauge transforma-
tion

3436 J. Math. Phys., Vol. 25, No. 12, December 1984

e®, 0
= %)
0 , e — i0
the linear operators change to a new system giving the equa-
tion
(iQ, + Q. +i(|Q1°Q). £B|Q*Q
+2(6, —20% —i6., )0

—26,(210, F2/Q1°Q) =0, (4.1)
where the new field Q = ge*® has been introduced choosing
6, = Fslq?, (4.2a)

and

O, = +ib(gq*, —q*q,) +jadlgl*, (4.2b)
Eq. (4.1) reduces to a higher-order MNS (named HMNS)
given by
iQ, + Q.. +ia(|Q1°Q), +BIQ1°Q + 845 + 2)|Q|*Q

+ 4i8(|Q ). =0. (4.3)
Note that Eqgs. (4.2) are consistent with the condition
O,, = O,, dueto Eq. (3.10), and (4.2a) and (4.2b) are, respec-
tively, the densities of first (“particle number”’) and second
{“current”) conservation laws for system (3.10).

For the particular case @ = 0, 8 #0, which reduces
MN:S to the standard NSE (3.1), one gets the corresponding
higher-order system (named HNS) through gauge transfor-
mation (4.2) in the form

Q, + Qu £BIQIQ +46°Q1°Q + 4i8(|Q 7). =0.
] (4.4)
Equation (4.4) may also be obtained directly from (4.3) by
putting o = 0.

The case a#0, S = 0 on the other hand reduces MNS
to DNS (3.3). The U(1)-gauge transformation (4.2), therefore,
generates from DNS the following higher-order equation
{named HDNS}, which is also obtainable from (4.3) for

B =0:
iQ, + Q.. +ia(|Q°Q), + 5(45 + a)|Q |*Q

+4i5(|1Q %), 2=0. (4.5)
It is remarkable that the particular choice « = — 40 leads
further (4.5) to the Chen—Lee-Liu (CLL)"’ equation

iQ, + Q.. +ia|Q]’Q, =0, (4.6)
whereas the choicea = — 26 transforms (4.5) to the Gerdji-
kov-Ivanov first type (GI,) equation

iQ, + Q.. +25°10['Q + 2i6Q7Q* = 0. (4.7)

Thus, all the equations (4.5)—(4.7) are gauge equivalent to
DN (3.3), the connection between the spectral problems of
CLL and DNS found recently by Wadati and Sogo'® reflects,
as shown here, a more general gauge equivalence between
them.

If, however, weseta = — 46,8 #0, (4.3) yields a mixed
CLL and NSE type equation (denoted by CLL-NS)

iQt +Qxx iB]QIZQilalglex =0, (48)
whilefora = — 28,8 #0, we get the Gerdjikov—Ivanov sec-
ond type (GI,) equation

iQ, + Q. + 80170 £28%|Q1°Q £ 2i6Q?Q* =0.
(4.9)
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FIG. 1. Gauge equivalence between various LLE and NS systems. The LLE with field SeM* = G /H, where H = U(1), G = SU(2), and SU(1,1), corre-
sponds, respectively, to the “attractive” ( + ) and “repulsive” { — ) types of NS systems.

Therefore, equations (4.3), (4.8), and (4.9) are naturally
gauge-connected with MNS (3.10). Similarly, from MDNS
(3.23) by A-gauge transformation 6, = a® and
O, = + ai® ~*g*q. — q*q)one gets a higher-order nonlin-
ear equation (called HMDNS) in the form

iQ, +(Q/P),, —2aiQ.(1+ D %) —4a°Q/P=0.

(4.10)

Frequently, in solving practical problems, higher-order
nonlinear terms are neglected to approximate the field equa-
tion to some integrable system. The examples presented here
demonstrate however that often the higher-order nonlinear
equations are reducible exactly to some standard integrable
system through gauge transformation without neglecting
any higher nonlinearities.

V. GAUGE EQUIVALENCE BETWEEN VARIOUS LLE
AND NS SYSTEMS

If G is the connected Lie group associated with Lan-
dau-Lifshitz systems and A C G is the closed subgroup of G,
then the corresponding field function SeG /H under local
gauge transformation g(x)eG may be represented as
S=g"'Jg, whereJisa diagonal matrix with [Z,A] =0,
heH (see Ref. 7). Such gauge transformations (as shown in
Sec. ITI) change the LLE to the corresponding NS system.
Note now that the gauge transformation g—g’ = hg with
h (x)eH keeps the S field left-invariant S’ = (g')~'3g’

=g~ '3g = S. Similarly, § is right-invariant (g’ = g& ) for
the representation S = gZg~". Consequently, under

[# (x)eH ]-transformation LLE is invariant, while the NS sys-
tem may change. We conclude, therefore, that together with
different NSE all their gauge-transformed equations relative
to local group H or any subgroup of it are also gauge equiva-
lent to the corresponding LLE systems.

Hence, in light of the [H = U(1)]-invariance of the LLE,
we find the diagram (Fig. 1) of gauge equivalence between
LLE and NS systems proposed here.
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VI. CONCLUDING REMARKS

We have found a number of LLE systems through
gauge transformation of known NS type equations. By U(1)-
gauge transformation of NS systems we have also generated
different higher-order nonlinear equations. Due to the gauge
equivalence with integrable NSE the integrability property
of the proposed systems may be predicted. Therefore, such
nonlinear systems might be of much use for approximating
some real models in quasi-one-dimension.

The nonlinear equations proposed here may be general-
ized also for higher-order compact or noncompact groups,’
e.g., G=SU(p + g), H=S(U(p) X Ulg)) or G =SU( p,q),
H = S(U(r,u) X U(s,v)) withr+ s =pand u + v =g¢q. The
generalized LLE systems with SeG /H would be gauge equi-
valent to the corresponding matrix NS systems with global
symmetry group  and to all their gauge-transformed enti-
ties relative to the local group H or to any of its subgroups.

We conclude with the remark that, usually for gauge
transformation, Jost functions are taken at A = A, = 0.
Here, in finding gauge equivalence of different NS systems,
one as a rule must choose 4,#0.
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Generalized logarithmic Borel summability
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Istituto Matematico, Universita di Modena, 41100 Modena, Italy
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The recently introduced logarithmic Borel summation method is able to sum strongly divergent
series of a particular type. A satisfactory extension to the applicability of this method, obtained by
using the classical Borel-Le Roy transform, is presented. As examples we consider a class of
nonpolynomial anharmonic oscillator models in the *t Hooft simplified form.

PACS numbers: 02.30.Lt

1. INTRODUCTION

It is well known that most of the classical applications
of the Rayleigh—-Schrodinger perturbative theory, such as
the Stark-Lo Surdo effect, the Zeeman effect, and anhar-
monic oscillators (for a review see, e.g., Refs. 1 and 2} give
rise to diverging power-series expansions. In all such prob-
lems we have eigenvalues or resonances with asymptotic
power-series expansions given by the perturbative theory
E,(B)~Z2.a’B" as B #0.

An important result in mathematical physics is the
proof that an eigenvalue (or a resonance) can be actually
obtained from the perturbative series by the Borel sum.>~

More singular perturbations of solvable quantum me-
chanical Hamiltonians have been recently studied, showing
the failure of the classical Borel summability. An example is
given by the exponential anharmonic oscillator with Hamil-
tonian p? + x? + Be’*X, acR" (see Refs. 6 and 7). In such
cases we expect power-series coefficients diverging as e®* 7/*
(see Ref. 6).

A method of sum called “logarithmic Borel,” which is
able to treat such a diverging series, has been previously pro-
posed.® Now we present a class of generalized Borel summa-
tion methods of order (a,m), ¢€[0,«x), m =0, 1, 2, ..., that
contains the previous ones as particular cases. It is able to
sum series with coefficients a, diverging as (mk )le®**/4,

Possible physical examples are given by mixed power-
exponential anharmonic oscillators like H = p* 4+ x* + fx"
€™, neN. Another possible application is the high-tempera-
ture power-series expansion of the pressure for a classical gas
with a smooth pair interaction potential @ (|x, — x;|) such
that @ (r)~exp((ln r~")'/?) as —0 (for less singular poten-
tials and usual Borel summability see Ref. 9). In Sec. II the
summability criterion and the necessary condition theorem
are proved for a > 0, meN. In Sec. I1I we apply the criterion
to a class of simplified physical examples. In the Appendix
we give the asymptotic behavior of the weight functions ap-
pearing in the direct and inverse Borel transforms.

li. THE METHODS

Each one of the methods we consider is a particular case
of the “moment constant methods” (Ref. 10, pp. 81-86) for
which we are able to give a criterion of the Watson-Nevan-
linna type (see Ref. 10, pp. 192-195, and Refs. 11 and 12).
Thus let us recall the “moment constant methods.”
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Let p{x) > O be a function defined on R™ with finite mo-
mentsy, = f&x* p(x)dx, k=0, 1,2, ... . We say that a series
3.a,z"is u-p-Borel summable if (a) B (v) = £7_ oa, (1)~ V"
is convergent in some disk |v| <d; (b) B {v) has an analytic
continuation to a neighborhood of the positive real axis; (c)
fl2)=2z""§¢B(v) pvz"") dv converges for some z > 0. No-
tice that if p(x) is analytic, f(z) can be defined for nonreal
values of z as well. In such a case f(z) is the p-p-Borel sum of
3.a,2* and B (v) is the u-p-Borel transform.

We now consider a class of p functions classified by two
parameters (a@,m) and we call f(z) the (@,m) Borel sum of the
series if p = p,, ,,, is given by the following.

(i) Py ) = ()~ 2{mx) f: exp( — a~ (in (xr )}

—t —l/m)t—lfl/mdt
fora>0,m=1,2,3,...
(i) P1g my (%) = (ma)~"?x ™ exp( — & '{In (x))?)

fora>0,m=0.

1 —xVm_
(111)P(a,m)(x)=m le s 14+ 1/m

fora=0,m=1,2,3,...

The classification is justified by the behavior of the moments
ptatm) = [ ¥l =k e,
0

The case (iii) is the usual Borel-Le Roy summation.>'® Let
us state the criterion for the logarithmic Borel summability
(ii)® and for the generalized logarithmic Borel summability (i)
together.

Theorem 1: Let meN,, acR™. Let f{z) be an analytic
function on the Riemann surface of In(z) in a domain D given
by

D ={z/ — » <Re(In(z}} < ¢y} for some c,eR,
satisfying the following properties:

N1

fiz)= Z akzk + Ry(z), (1)
K=o

IRy (z)]<A4 (|6 )by |2|™, NeN, zeD, (2)

where 6 =arg(z), 4(¢)=e* "2 for some €>0,
and by = (mN)I6%*V*/* N = 1,2, ..., where 4, 6, € are inde-
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pendent of z. Then the series £, a, z*is (,m) Borel summable
to f{z).
Proof: The m = O case is proved in Ref. 8. Allthe m > 0
cases reduce to the m = 1 by an argument exposed in Re-
mark 1, so it is sufficient to prove the (,1) Borel summabi-

where y(re,)={t/[t|=r, |arg(t) <€, + m/2}uft /arg(t)
= 4 (e, + 7/2), |t |<r]. Of course the integral (4} is inde-
pendent of r and €, for eR™* and 0 < €, < 7/2. The functions
p and o enjoy the following asymptotic behaviors:

plw)=w""exp{ — a™ '(In wa/2)?

lity. Let p(w), o{w) be defined by
plw) = Pia) (W)

= (am)~ " w! f exp(—a '(lnwt) —t ) ~2dy,
{¢]

+ 2a” '(In wa/2)(n In wa/2) — 2a ="' In wa/2
+ O((In In wa/2P)}, (5)
o{w) = expla ™ '(In wa/2)* — 2a~ (In wa/2)(In In wa/?2)

(3)
2 —1 2
olw) = 2(am)*2mi)~! § expla ™ '(In wt )? 2a Inwas2 + O((n Inwa/2)} e
Nne) as w— oo in any finite sector of the Riemann surface of In w
+ 7Yy, (4)  (for a proof see the Appendix).

Set z = |z|e®, v = |v|e™, t = |t |e™. For |¢| <eandj=0, 1, 2, ... let us define

By) = (2mia)~" Jw o

—ioo + ¢

fleY) % olve ~“)du, (7)

where ¥ = In z varies along the axis Re u = ¢, and the integral is independent of ¢, c€( — o0,¢,). The integral in (7) is absolutely
convergent and defines the jth derivative of B (v) = B “(v),

+io ¢ 1/2
| B v)| = ,(Zﬂia)_lj fle) (ma) ~ 3(; e e Wi’y — =i dr dy
Hre)

— i + ¢ (7Tl)

+ oo r
<Dy [ hrtet ) (2 [ enpllolr coste, — 9] + 7720 < Texpl —a~e, — (6] + w/2P)r ! ar
— o 0

+ €+ 7/2
+J\ e‘”" ,r_l_jear|'C_]nr)2eia7l(9_d,]2d¢)d6’ (8)

— € —7w/2

where the integral in 7 exists if |¢| < €, <€, so that also by the bound |f (e * )| <4 'e*” "¢ =< =2 implicit in (2), it follows
that B (v) is analytic in the whole sector |arg(v)| <e.
On the other hand, by inserting (1) into (7) (for j = 0) we have

+lio +C N—] + i + ¢
B(v) = (2mia)™! ( f S apetolve™ “)du + f Ry (e¥)olve ™ “)du). 9)
—icc +¢c k=0 — i 4 ¢
By interchanging the order of integration and performing the Gaussian integral, the first term in (9} turns out to be
—1/2 . . + oo N—1 , -
ma) 36 er ety =1 (TS g explle + i0)(k — 2 In vt e <7 4 dr
(27ri) Tned —w k=0
N71 2 1 N71 2
=3 qe ™ /4(2771'}_'4)‘ (r)e' 't~ dr="Y a,(kle™ )1k (10)
k=0 Rer '=,""! k=0
Therefore, by (9), {10), and {2) we have
N—1
lB(u)— S ai(kle™ 4k
k=0
1/2 + oo + ¢
= ’____—2(7“!)2 3€ e 't ! f Ry(e¥)e” =m0’ dy dt ’
(27Tl)a Ret'=r"" —foo + ¢

1/2 + foc + ¢
— 2(7T(If)2 § e”'ilt _IJ ea*l(w2_2i¢w7¢2)RN(ew+ln|t1)dw dt ‘
(27]’1) A JRet '=r"! — oo + ¢

{where w = u — In|z |, and ¢’ can vary in ( — o0,¢,) if 27<1]

+
<4 99 e 't —‘J e =M explaT (02 — 2(e + 7/2)|6 |)e™ TN AN (¢ [N dO dt
Ret '=r"" — o
(by choosing ¢’ = — Na/2, since |¢ |<€, + 7/2 <€ + 7/2)
<A,3§ 8| 't TN 1N dt | <A,6N VAN (11)
Ret '=r7"

3440 J. Math. Phys., Vol. 25, No. 12, December 1984 V. Grecchi and M. Maioli 3440



(by choosing » = v/N ). So, for all v such that 0 <v <& ! the remainder tends to zero as N— + . On the other hand the
power-series expansion for B (v) near v = Qis just convergent in the disk |v| <& ~! by (10) and by the bound |a, | <4;6* (k l)e***/*
implicit in {2). Thus, B (v} defines an analytic function in the region S (8,€) = {v/|v| <8 ' or |arg(v)| <€}, and it is uniquely
determined by the 2, ’s. Besides, for large |v|, B (v) can be bounded by means of the estimate (6) on o{w)

|B(v)|<A4fj: allel —e—m2p exp[ (ln 12’ + i — 9))

—+—2a"(ln |2| 4 — 9)) 2a"(1n |2| +ily— 0))1n(ln| vle |y 9))+0<1nln |”'“) + (9)”d6
<A4(J+we720"(€+W/Z)IQIeZa"weZa”(tl/fe)ﬂ/leOWIdg)exp[ (In Jvla)

2
4+2a 'Ini—— [vle —2a _l(ln v |a) (ln In m) +0(ln lnm) ], (12)
2¢e° 2e° 2¢e° 2e°

where the integral is convergent (and independent of |v|) for |arg(v)| = |¢| < €, and the estimate is correct for all ce( — oo ,¢).
By the analyticity of B (v)in S (5,€), by the bound (12) for large |v|, and by (5) we have, for any Y and ¢ such that |¢| <€, |§ | <7/2:

1 © .
<f v J lexp — (@™ '(In ve¥te’z=")2)e ~ ““t ~* dt B (ve')|dv
0 (4]

z! f B (ve™)o(ve™z ™ ")e" dv
0

+ea_'(l/’—9)2j v“exp[6a (ln 5 )1n}z| —c)—a” lnjzj)2+a_'c‘2
1

+ 2a“(1 —) (lnl ) 20='0n/2 — Za“(ln ) (m In ﬂ)
! 2|z| 2|z| + T 2¢° 2e°

+O(nlnvf} +off )}dy<A5e"“”{e"‘_'("”r $-0r

+ e~ ElFexp(2a™ {(Injz| ~')In Injz| ~)expla~ (% — 6)* F 22 '6r/2)}, (13)

if only ¢ is chosen such that In|z| — ¢ < 0 (which can be done uniformly for |z| small). Notice that (13) holds for 0 < |z| < e for
any ¥ and ¢ such that || <€, |¢ |<7/2; and with ( — 7/2) in the second term if 8> 0 and ( 4 7/2) if 6 < 0. So, by suitably
choosing ¢ and ¢,

z™! J.w plu/z)B (v)dv| <Ag expla™ |0 | — 7/2 — €,))
0

(14)

uniformly for any fixed €, < ¢, for zeD, for some 4 independent of z. In particular, the integral in (14) is absolutely convergent.
One can verify that it equals the function f{z} by interchanging the order of integration and performing the two integrals as a
logarithmic Borel sum, whose transform is not regular in the origin, but is a Borel sum:

- fw plv/2)B (v)dv = (@m)~'/? J g =@ 't/ (t -! Jw e "'B (v)du)t —ldt. (15)
0 o

0

Alternatively, one can perform two Laplace transformations
in the right-hand side of (15), while B (v) given by (7) can be
computed showing the corresponding inversion formulas

B(v)=(2mi)"! § et ~2ma)"*(2mia)™!
Res~'= "1

+foo + ¢ , ,
XJ e* o Int Lo dy, {16)

—foco + ¢

Thus inserting (16) into (15) we have an identity and the crite-
rion is proved.

From assumptions (1) and (2) it actually follows that the
generalized Borel transform B (v} is analytic for
veS (8,e)={v/|v| <8 ! or |arg(v)| < €} and satisfies a bound
of the type (12) uniformly on each S (§,,¢,) with 8, > 8, €, <€.
In view of Remark 1, such a bound is easily extended to any
case with meN: Indeed, by replacing @ by am™? and v by

v/ one checks (17). In the following theorem we assume
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guch properties of B (v) and we prove that (1) and (2) are neces-
sary conditions too for generalized logarithmic Borel sum-
mability.

Theorem 2: Let B (v) be an analytic function in S (5,¢)
= {v/|v| <6 ~" or |arg(v)| <€}, satisfying

|B (v)| <exp{m*a~'(ln a|v|"™/2m>?e")?
+ 2mPa~ " In{a|v|"™/2m?)
—2mPa~ (In alv|""/2m?)(In In a|v|"™/2m?)
+ O(In In a|v|"™/2m?%")} (17)

for all cg( — o0,¢,), uniformly on §(5,,¢,) for any §,> 8,
€, < €. Then the function

S =2 [ praliz 1B 0l
Q
is analytic in the domain D of Theorem 1 and satisfies condi-
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tions of the type (1) and (2), where 4, 8, € are, respectively,
replaced by some 4,, §,> 0, and by any €, < €.

Proof: Without loss of generality we can treat the (a,1)
case (see Remark 1). Let B (v) satisfy (17), with m = 1, and
analyticity in S (8,€). Then, in analogy with (13), one checks
that f(z) exists and is analytic for zeD. Moreover, for values of
Y and ¢ to be specified, we have

N—1

= Jm [B (ve™) — Nil a; (k le™ 4~ Ywe)* |(am) '/

k=0
= - i 2 ; i b
XJ e — @ inie /z)tfze—we—ue'/ "’/tdtdv. (18)
0

It is sufficient to bound the integral in v near v = 0, since at
v = oo the estimate is analogous to the one in (13} and it gives
just
Dye—* "™=exp(2a~(In|z|~')(In Injz| "))

Xexpla (|6 | — 7/2 — &) (19)

for some D, > 0, for any ¢, < €.
Near v = 0 we have

f lexp(—a ™ '(Intz"'e ™)) 2|
(¢]

S /2
X j (DI)NUNe— vt ' cos(y — &) dv dt
0

<(D2)N(N!)|Z|Nea1\71/4ea o6 —8) (20)

ifcos(yy — 6)> 0, thatis | — 8] < 7/2. By suitably choosing
Yand ¢ (p =€, + 7/2, ¥ =¢€,, where ¢,<€, <0 if 6>0;
b= —€,—7/2, ¥ = — €, if 6 <0) we have from (19) and
(20)
|Rw(2)| <Ao(8o)™ (Ve *|z| Yexpla ™ '(|6 | — 7/2 — &)
uniformly for any fixed €, > € and the theorem is proved.
Remark 1: Let f(z) satisfy the condition of Theorem 1
with parameters (@,m), m>1, a>0. If we consider ¢ (z)
= f(z") we have ¢ (z) satisfying conditions of the type (1) and
(2) with parameters (@m~21) on D. Since Theorem 1 is
proved for m = 1, the Borel transform B (w) exists and & (z) is
given by

861 =" [ Blw)pian iz M 21)

By the relation pg,-:,(X)=x"""pg (X", f(z) is the
(a,m) Borel sum,

flzy=z""1 J: B (V) pram vz "), (22)

where B (v) =m "B (v"/"). So the criterion is proved for
a>0,m > 1. Since (21) and (22) are equivalent, the argument
can be reversed and Theorem 2 is proved for alla >0, m > 1,
too.

lil. APPLICATION

To give a physical example in which Theorem 1 can be
applied, let us consider the trace of the semigroup generated
by H(B)=p* + x>+ Bx" " 'e*: Trle ~*#¥)), 1>0, B>0. We
examine a simplified model, suggested by ’t Hooft, in which
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the integral kernel K of e = *#¥#)is replaced by K ", where the

K "’s are the approximating kernels in Trotter formula.'> In
the notation of Ref. 13 the trace corresponding to K" is
given by

Fow
T,([J’)zf K Wix,x; — it )dx

+ o
2 malx
:j (277.t)~1/2e—14x + Bx e]dx.

Now we prove that the function T',(3) satisfies the hypoth-
eses of Theorem 1 (of course such a proof can be extended to
all# # 1 by only varying the index a of the summation meth-
od).

The N th remainder of T'(f3) is given by

N—-1

RyB)=T\p)— z akﬁk

K=0
+ o ]
:J (277.)‘1/26~x'

X(( = BYY /N Nim+ ghxg =™ e gy (23)

where 0<7<1, 7 = p{Bx™ * ‘%), and 2,a, S * is the asymp-
totic series expansion of 7,3 ). R v (8 ) is obviously analytic on
the whole Riemann surface of the logarithm (e.g., by the
translation x—x — In ). Let @ =arg{f )>>0. Then we distin-
guish between the cases §<cm and 8 > cm, with fixed c» 1. If
6@<cm, by using the translation x—x — i6, it is not difficult
to obtain the required bound (2) for the behavior with respect
to NV.

If 6 > cm let us choose the path

x=x(y)=y —i0 +ie — (m+ l)lnly — i), yeR (24)
for fixed € in (0,7/2). Then dx = (1 — (m + 1)y — i@}~ ")dy,
whence |dx|<C, dy. Moreover |exp{ — 7/ (x(y))"e*"}|<1.
Let us fix y<(m + 1)7; then, for ye( — o« ,78) we have

e~ ¥[<exp( — (y — (m + ln| y — i€ |

X expl( — 6 + € + (m + 17/2)) (25)
for some €, > 0. Therefore,

RMBN<B1*/NYC, [ expl(—0+e,

+(m+ Va/2P + o(f))e (¥ — (m + ln|yl)?
X |y — (m -+ 1)1n|y| |(m+ I)NeNy7(m+ 1)V In|y| dy

+ =

B 1Y /N, f expl — (y — (m + 1)

¥6
XIn|p|)2) e + %9y — (m + 1)
XIn[p| |7+ M|y = E 1N gy, (26)
The first integral in (26), by the inequality
v — (m + Din[y| [+ ¥
<mN + N 4 1207+ DN [+ 1
+ ((m + Vinlyj)m+ UV}
and by a saddle point argument,'* turns out to be less than
(CIV(BIV/NY)
xXexp((— 68+ €, + (m+ 1)7’)’/2)2)1\7("“"”NeNz/4 (27)
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for some C,, €, > 0.
In order to estimate the second integral in (26) let us
distinguish the cases N>2y°0 and N < 2/°6.
If N>29°6 the second integral, in analogy with (27), is
bounded by
(C3)" exp{( ~— N /27%)(2€ + (m + 1))
X (IB |N/N!)e92 +o(8)N(m + 1)NeN1/4
CYV|B |V + o0~ et bmt MmO N YN 4 (28)
If N<2y?6 the integrand is nonincreasing in the interval
(76, + ) (provided that y<(m + 1)) and the second inte-
gral in (26) is bounded by
(CM(IB ¥ /N e+ 4 exp( — (¥6 — (m + 1)in(yB))?)
X Ay0'™ "™ 4 (im + Din(yo )=+ Ve
<Co(Cs)¥ (18 ¥ /N YJexpl(60 — €, — (m + 1}7/2),  (29)
since e~ 70T+ N1 —°07 =21 where y is small.

Therefore, by combining (27), (28), (29), and the analo-
gous estimate for <cm, we have

IR y(B)| <Ay exp(( — 6 + €, + (m + 1)7/27)mN )
X eV 8N 8] (30)

uniformly for NeN and 630. In a similar way one can pro-
ceed for 8 < 0. Thus the hypothesis of Theorem 1 is verified
and T(8) is uniquely defined by the asymptotic series
3.a, B " through the generalized Borel sum of order (1,m) as
defined in the present work.

APPENDIX: PROOF OF THE ASYMPTOTIC BEHAVIORS
(5) AND (6)

Let z,=14w) be the solution of the equation
t 7% —2a~ 't “'In(wt ) = Odefined for w > 0 and analytically
continued on the Riemann surface of In w, for |w| large. In
any finite sector of this surface we have

= (2) (1n 22)
><(1 + 0((ln In %) (ln %q) ﬂ)) o

By the substitution ¢ = #,(w)r in (3) we have
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plw) = (ra)” 1V2ypgp)~le — o inlwml?

x J exp( — 2o~ \(Infwty) pir) glridr,  (A2)

wherep(7) = 77! + In 7,¢(7) = ¢* '™ 772, and the integral
in (A2) is uniformly convergent for Re In(wt,)> 0. Since
p'(7) =0 for 7 =1, an application of the Laplace method
(Ref. 14, Chap. 4, Theorem 7.1) yields the asymptotic behav-
ior as wt;— oo in any finite sector of the Riemann surface of
Infwt,)

plw)~(m/a)™ I (3) (wey) !

X exp( — a ™ !((In wt) + In wip))a ™" In wey) V2,
(A3)

Inserting (A1) in (A3) we obtain (5).

By an analogous substitution in the integral (4) and by
choosing a contour y{1,€) containing the saddle point 7 = 1'4
we have

ofw)~(a/m)"*I" (})

X expla ™ (In wty) + 2 In we e~ Inwty)~ 12
Q
(Ad)

in the same limit of (A3), whence (6) follows.
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Existence and uniqueness for the solutions to a class of nonlinear equations arising in transport
theory are investigated in terms of a real parameter @ which can take on positive and negative
values. On the basis of contraction mapping and positivity properties of the relevant nonlinear
operator, iteration schemes are proposed, and their convergence, either pointwise or in norm, is

studied.
PACS numbers: 02.30.Rz, 05.60. + w

|. INTRODUCTION

In this paper we shall consider the problem of solving
the nonlinear integral equation

km+wmfkummm@=mn.mmm (1)

where K {x, y) and S (x) are real non-negative functions in the
real domains (a,b )x(a,b }and (a,b ), respectively, and a isareal
parameter. The class of nonlinear integral equations de-
scribed in Eq. (1) includes the nonlinear particle transport
equation when removal effects are dominant. ' In that case
the dependent variable x is the particle speed ranging from 0
0 o0, a is equal to unity, the known term S (x) is the intensity
of the external source, the unknown 4 (x) is related to the
particle distribution function f(x) by

h(x) = G x) f(x),

where G is the positive macroscopic removal collision fre-
quency of the host medium, and finally the (symmetric) ker-
nel K (x, y) is given by
l X+ y
Kxy)=————o
XGX)G(y) Jix -y
where g is the microscopic removal collision frequency by
the particles between themselves. On the other hand, Eq. (1)
is also a generalization of a famous equation in transport
theory, the so-called Chandrasekhar H-equation®* in which
xrangesfromOto l,a = — 1,5 (x) = 1, A must be identified
with the H-function, and

Kx,y) = xd(p)/(x + )

for a non-negative characteristic function . This latter
equation has been widely studied in the literature,>® and due
to the analyticity properties of its kernel, it has been possible
to determine exactly the number and properties of solutions,
and even to write them out explicitly.

In this paper, after a preliminary investigation based on
contraction mapping, we shall mainly employ positivity ar-

uglu) du,

® Permanent address: Nuclear Engineering Laboratory, University of Bo-
logna, Bologna, [taly 40136.
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guments to study the existence and uniqueness of solutions
to Eq. (1), with particular emphasis on positive solutions,
that for the applications mentioned before, are the only
physicat ones. The convergence of iterative schemes for the
solution of Eq. (1} will also be demonstrated.

Throughout this paper we shall assume that S € L (a,b )
for some p, with 1<p< o0, and that the linear integral opera-
tor

(Um=ijwﬂw@ P

is a bounded mapping of L,(a,b}into L _ (a,b), with norm
IT |- A sufficient condition for that would be’

Liloy @
P g
in which case ||T'||<M '/%. Further conditions that will be
needed in some occasions are the following.

Assumption I: The function Sis continuous and the ker-

nel X satisfies the requirement

b
ess supJ K, pWidy=M< w,

x€(ab)

b
lim | |K(x,,y) —K(xy)|?dy=0, x,,x,€(a,b)
(4)
forany ye{a,b).
Assumption 2: (TS)(x) is bounded away from zero,
namely,

Eses(aizblffbK(x,y)S(y) dy=6>0. (5)

We note that Eq. (1) may be rewritten either as

h=Alh), Alh)=S—ahTh, (6a)
or as

h=Bh) Bh)=S5/(1+alh), (6b)
both operators 4 and B being nonlinear, with A (0)
=B(0)=S5.

Equations (1) can also be regarded as a particular Ham-
merstein equation; for example setting

hix)=[1+afx]™' (7)
one ends up with the equation of Hammerstein type®
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f(X)=£ Kl 8 [n SO dy, bl =i,

where however the usual assumption of continuity of ¢ with
respect to u is violated at u = — 1/a.

Il. GENERAL RESULTS

We can obtain some quite general results by applying
the contraction mapping theorem to the operator 4 in Eq.
(6a). If 4 belongs to the closed ball of L, with center at the
origin and radius 7, namely ||4 || <r, we get at once

(A (R)|<S + la| |h] |Th|<S + |l |T|| |2 ]] 4]
and then

4 EI<IS T+ lal 171 2 P<IS T+ lel [1T]I7
In order to insure that |4 (4 )|| <7 we impose

|| |1 7|l — 7 + IS <O,
which leads to the conditions

la|<IA4T IS (8)
and
1= V1—4fa[ T IS, t+~1—4le[ IT]IST

2e| |T| 20el |T|| (9a)
Further, for 4 to be a contraction, we note that
|4 (h)) — A (1) = |a| |ho{Thy — Thy) + (b, — hy) Thy|
<la|(IT |l 1Az — As || A2
TN 11y 1 Vaz = Aol

so that
|4 (7)) — A (B <! (| T |||l + (1] DlI7y — Al
L2rlel| |T || ||h; — Ao,
which leads to the restriction
r<1/2lal |T|) (9b)

We can then state® the following.

Theorem 1: If « satisfies Eq. (8), there exists a unique
solution / * to Eq. (1) in any closed ball of L,{a,b Jcentered at
the origin with radius 7 such that

1—V1—4a[ T[S . 1

<r<g . (10)
el | T 2a| T
Moreover, the iteration scheme
h,=A4h,_) (11)

converges in the L,-norm to this unique solution if the initial
guess A, is chosen in the ball.

This theorem is valid under the general hypotheses of
the Introduction [S (x) and X (x, y) non-negative, S€ L, Tisa
bounded operator of L, into L, ]. In this theorem, however,
the non-negativity of S and K plays no role, and can be

dropped.
A trivial corollary of the theorem is
1 -1 —4)2|||T]||S

2|al||T||
and that other solutions, if any, will have a norm not less
than 1/2|a| ||T||).
If now, in addition to non-negativity of S and K, we
assume that a is positive, we can sharpen Theorem 1 to show
the following.
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Theorem 2: Let a > 0 satisfy Eq. (8). Then Eq. (1) has at
least one non-negative solution 4 * € L, with

el TS T = T ps<ps, (13
2| T
which is the unique L,-solution with norm less than 1/

(22||T'||), and is the limit (in the L,-norm) of the iterative
scheme (11) for any initial guess 4, with

—J1=4a||T| IS
ol <A L= 42l T [S] (14)

2a|T| '

Ifin addition /4, is non-negative and less than.S, all 4, are also
non-negative and less than.S. [Whenever the context is clear,
we willuse the notationg</ tomeang{x)<fix)a.e.forx € (a,b )]

Proof: The proof of this last theorem follows quickly
from Theorem 1. The unique solution 4 * in the ball defined
by Eq. (10) is the limit of the sequence (11), and is indepen-
dent of A, provided h, satisfies Eq. (14). We then take
0<hy<S, and show by induction that 0<A,<S. Suppose
0<h,, _ <S;then 4, <8 follows immediately from Eq. (6a) for
a>0and A, ,>0. In addition,

hy=Ah,_)>S[1—aTh,_,]
>S[1—a|T|| |4, _.[]1>0,

since ||, _ || < 1/(d|T ||} is guaranteed a fortiori, h,,_ | being
in the ball (10). This proves both inequalities for 4,, and thus
for A* in the limit for n»—. Therefore, 0<A *<S, and
|IA *||<|IS || [which is of course stronger than Eq. (12)]. Final-
ly, we note from Eq. (1) with @ > 0 and 4 *>0 that

ISU<IA*| + i *[| [1Th*||<|iA*]| + | T || |17 *|
from which the other inequality in Eq. (13) follows directly.
This completes the proof of the theorem.

From this proof we also note further that starting from
anon-negative initial guess in the ball || || <||S || the iterative
procedure is positivity preserving inside the same ball for

a<1/(IT IS ) (15)
which is weaker than the condition for convergence given by
Eq. (8).

There of course may be other solutions of Eq. (1) than
A *. In this regard we write

Lemma 1: Let a >0, and suppose that a nonpositive
solution A to Eq. (1) exists in L,. Then

“il“ 1+V1+4a”T” ISl . (16)
2a|T|

[Note that the right-hand side is greater than 1/(a||T ||) which
is twice the lower bound in Theorem 1.]
Proof: To prove Eq. (16) it is sufficient to write
§= —h[aT(—h)—1],withSand — A non-negative, and
a[T(— h)]> 1, so that, taking norms, we find
IS 1I<IVf || ess suplaT(— &) — 1<z || T 2 ]| — 1)
=a|T| A — |l
which yields
a|T| ||a|* - |lA]l — IS ||>0
from which Eq. (16) easily follows.

Another general result can be established for positive a.
We write
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Lemma 2: Let a >0 and Assumption 1 hold. Then, if a
non-negative solution # € L, exists, this solution is necessar-
ily continuous, and is positive if and only if S is positive.

Proof: By Eq. (4) T'maps L, functions into continuous
functions, so that 1 + a7% is continuous and bounded away
from zero. Thus B (% ) is continuous since S is continuous and
vanishes where S is zero, and only there.

We can complete Theorem 2 and Lemma 1 by writing

Theorem 3: If a solution /4 to Eq. (1) exists, and there
exists an € > 0 for which

A<t — &/lal T}, (17)
then % is non-negative. It is also continuous when Assump-
tion 1 holds.

Proof: The proof follows from 1 + a7k > €, which en-
sures that the denominator of B {#) is positive and bounded
away from zero (and continuous under Assumption 1).

Results somewhat similar to Theorems 2 and 3 can also
be shown for the case a < 0. It proves convenient to refer to
Eq. (6a), and look for the fixed points of the operator A de-
fined by

Ah)=S+phTh, B= —a=|a|>0. (18)

It is clear that now A has several nice properties. It is a con-
tinuous operator in L, since from

) =4 =B|i =L TH +LT U~ L
LBITNNAINA =L+ LA =L AD

it is easily seen that for any f,,,€L,,

14 () =4 RI<BIT WAL+ LA =L (19)
In addition, 4 is positive [ f >0 implies 4 ( f)>>S>0] and mono-
tone in the cone of the non-negative functions, since for f; >/,
we have

Af)—AL) =B /L =L TH +BLT (/i —£)>0.
(20)

We can prove
Lemma 3:Let = —a>0and
B/ TS |- (21)

Then the operator 4 maps the so-called conical seg-
ment'?(0,cS ) into itself for any ¢ such that

1 —T=#[TTST ., L +(T=HBITIIS .
BT IS | BT |1S]

Proof: If in fact 4 belongs to the conical segment {0,cS )
we get

A(h)>S30

and

A(h) =S8+ BhTh<S + BASTS<S + BT || IS |IS.
Thus the requirement 4 (2 }<cS leads to the inequality

BT IS [le* — ¢ + 1<0,
which is equivalent to Egs. (21) and (22). Note that the left-
hand side in Eq. (22} is always greater than unity.

From the continuity and monotonicity of 4, from
Lemma 3, and from the regularity of the cone of the non-
negative functions in L,, we can deduce immediately' the
following.
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Theorem 4: Under the assumptions of Lemma 3, Eq.
(6a) has at least one non-negative solution 4 * belonging to the
conical segment (0,cS ), where c satisfies Eq. (22), and which
is given by the limit (pointwise and in norm) of the monoton-
ic successive approximations

By, =Ah,) ho=S$. 23)

The conical segment to which 4 * belongs can further be
sharpened by observing that for any non-negative solution
we have h = A4 (h)>S, so that we may write

< *<1_V1_4B“T” ”S“ S. (24)
81T 1S

Itis worth noticing that Theorem 4 and Eq. (24) are in agree-
ment with Theorem 1 and Eq. (12), and that Eq. (8) coincides
with Eq. (21). The results are complementary and strengthen
each other. The solution / * of both theorems can be obtained
starting from any initial guess allowed by Theorem 1, the
solution is non-negative and satisfies Eq. (24) (Theorem 4),
and there are no other solutions with norm less than 1/
(281|T||) (Theorem 1). Other solutions, possibly positive,
might occur beyond the latter limit. When f is larger than
1/(4|T|| ||IS||), a non-negative solution might even fail to ex-
ist.

The results obtained so far all require restrictions on the
parameter . We might search for conditions ensuring the
existence and possibly the uniqueness of non-negative solu-
tions to Eq. (1) without restrictions on the parameter a.
However, the simple examples in the following section illus-
trate that this search might be fruitless for the case a <0.

llIl. SOME EXAMPLES

Equation (1) can be reduced to the solution of a system
of transcendental equations for a finite number of scalar co-
efficients when the kernel X (x, y) is degenerate (of finite rank
N), namely,

Kx,y)= 3 X,x)Y,(y) (25)

n=1
with for instance Y, € L,, X, e L ,, and of course X,, >0,
Y, >0. We will consider two very simple examples with the
lowest possible order of degeneracy.
Example I: K (x, y) = const = k. Setting

§=Lbh(x)dx, s=J;bS(x)dx

we get at once

h{x)=Sx)/(1 + ak§). (26)
Now integrating over x, we obtain the second-degree alge-
braic equation for £

aké?+ £ —s5s=0, {27)

which always has two roots, with different features accord-
ing to the values of a, £, and s. For a > O there are always two
real solutions

E=(—1+ 1+ daks)/2ak, (28)
one positive, with the lower magnitude, and one negative, in
agreement with Egs. (13) and (16), respectively, but without
any other restriction on a. When a < 0, and if we are interest-
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ed in real solutions only, there are no solutions for |a|> 1/
(4ks) [see Eq. (8)], and there are two positive roots for £ when
|| < 1/(4ks). Thus for the original unknown 4 (x) we obtain
one non-negative and one nonpositive solution (the latter
with larger norm) for @ > 0, two non-negative solutions for
— 1(4ks) < @ <0, and no solutions for @ < — 1/(4ks). In this
example the solution is in fact reduced to the analysis of a
quadratic algebraic equation and the solution depends mere-
ly on the sign of the numerical coefficients. Note that the
factor 1 4+ ak£ never vanishes.

It seems reasonable to expect similar trends in general
for Eq. (1). Of course the similarity cannot be interpreted
literally, as shown by the following example.

Example 2: h (x) + xh (x)§§ yh () dy = 1. Setting

§=J: xh (x) dx

we get at once (1 + £x) A (x) = 1, and then

h(x)=1/(1 + &x), (29)
where for an L ,-solution we discard all values of £ less than
orequalto — 1. For £ = Owe would get # = 1 which contra-

dicts the hypothesis £ = 0. For — 1 <£ <0 or § > 0 we mul-
tiply Eq. (29) by x and integrate, to get

E=1/E—(1/E)In |1+ £ (30)
For £> — 1, £ #0 all the roots of the transcendental equa-
tion (not algebraic any more, so that the number of roots is
unknown a priroi) yield a positive solution 2 in L,. Itis easy
to check that there is only one root £,#0, with 0 <&, < 1.
Thus as in Example 1 (with a > 0), there is a unique non-
negative solution, but now no other solutions exist, neither
negative, nor of changing sign.

Other well-known examples are available in the litera-
ture. The Chandrasekhar H-equation

1
B - [ AL hap=1, BY)
o X+)
with
1
1
W0, do= [ vhx)dr<t,
(@ = — 11in our notation) has one solution which is positive

on (0,1) for 3, = 4 and two positive solutions or just one posi-
tive solution for v, <1 depending on the particular form of
¥(x). In the former case the modified form of the same equa-
tion*

Fx)+ F(x) ly¢(y)F(y)dy= 1 (32)
VI —2¢,J0 x+y VI =24,

(with a > 0 in our notation) has two solutions, one positive
and one negative on (0,1), and no other solutions.!
Example 1 above shows the non-negative solutions can
actually fail to exist for some negative values of the param-
eter @, and that for other negative values of @ two non-nega-
tive solutions can also actually occur, even in the simplest
case where Eq. (6a) is amenable to a simple quadratic alge-
braic equation. It is then apparent that in general (i.e., with-
out restrictions on a) existence and/or uniqueness theorems
can not be formulated. However, for & > 0 some very general
results independent of the magnitude of & can be formulated.
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These results require only the very weak conditions on .S and
K outlined in the Introduction.

IV. THE CASE OF POSITIVE o

In this section we will look for non-negative solutions to
Eq. (1} when a > 0. In particular we look for non-negative
fixed points of the operator B in Eq. (6b), which is more
convenient to handle than 4, since it is always positivity pre-
serving. It is clear that the linear operator T is positive (/>0
implies 7f>0) and monotone'® (f,>f, implies Tf,>Tf,). B is
also positive, but not montone, since fi>f, implies
B(f)<B (/) But just for this reason B (still positive) is then
monotone, i.e., B f)>B*f,). Other properties of B with re-
spect to the cone of the non-negative functions in L, are
B(f)<S and B(f)>S /(1 + a||T|| || £ for £>0, namely

a(fISKB(IKBUSIS, ay(f)=[1+a|T| | F|17,
Bilf) =1, (33)

for any f>0. Also, for any f>>0 and y € (0,1) we have
B(yf) _ 1+alf

B(f) 1+4+yaIf
. _ alf _ _
=1+(1 y)-l_—TaTj)l y+4 -7
1—y=79>0. (34)

Equations (33) and (34) guarantee that B is S-concave. '’

Moreover B is a continouous operator with respect to
the cone of non-negative functions in L,. We have in fact,
for f,f,€ L,(a,b), f,and f, non-negative, @ >0

BB = aS |Tf, — Tf|
BU) =B = i+ o T
<a|T| [IA —LIS

and thus

I1B(£) = B(Al<alT(ISI ./ — Al (35)

which proves the continuity, and shows that Eq. (15) above is
a condition for B to be a contraction.

As for the problem of non-negative solution to Eq. (6b),
we remark that if 4 is such a solution, then A<S and
h = B (h)>B(S). All non-negative solutions are then located
in the strip.

S S
L+a|T| S]] 1+ aTS

With these results at hand we can now draw the follow-
ing conclusions.

Lemma 4: Let a > 0. Consider the successive approxi-
mation scheme

h,,=B(h,,_1), h0=0r (37)
where obviously 0<#4, <S. Then (i) the even subsequence
{h,},n=0,2,4,., is monotonically nondecreasing and con-
verges pointwise and in norm to a non-negative limit 4 °<S
belonging to L,; (ii) the odd subsequence {4, },n = 1,3,5,..,
is monotonically nonincreasing and converges point-wise
and in norm to a non-negative limit 4#° <S belonging to L,;
(iii) any approximation from the even subsequence is less
than or equal to any approximation from the odd subse-
quence (no overlapping); and finally (iv) the even and odd
limits are such that

h<S. (36)
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he<h®, h°—h°=aphTh° —h°The). (38)

Proof: Note first that if &, _ <h,, then B(h, _,)>B#,).
Thus we have A, >h, .\, h,, <h, , ,,and so on (reversed at
any step). Now if 4, _ <4, , |, then by analogous argument
we see that 4, >h, | ,, h, _ <h, ,, and so on (conserved for
terms of the same parity). Because we have taken 4, = 0, we
have hy<h, = S and hy<h, = S[1 + aTS ] L. Thus the oscil-
lating behavior of the sequence, the monotonicity of subse-
quences, and the non-overlapping follow by induction. Be-
cause the subsequences are bounded above and below by S
and 0, respectively, they converge pointwise. Further be-
cause the cone of non-negative functions in L, is regular, '
the even and odd subsequences also converge in L, norm to
h¢e L, and h°e L,, respectively, both limits lying in the
strip (36). If 7 ¢ = 1 °, Eq. (38) is obviously true. If h°£h° the
two limits must be related by

he=—S5 B, h°=—3 _ _B@e
14+aTh® 1+aThe
(39)

from which Eq. (38) follows.
Sufficient conditions for the convergence of the itera-
tive scheme (37) are given by the following.
Lemma 5: Let a >0 and suppose that either Eq. (15)
holds or the kernel X is symmeric, i.e., K (y,x) = K (x, y). Then
—

i o $0) o 150)

<aS‘( 1 _i)iThj__i
n—p nl;

<ﬂﬂwLm

2847 |IS]S.

Thus for any fixed p we have (since S€ L,)

hm 1hn+1 - n p+1| _O_hm ”hn+l —hn—p+1”

so that a pointwise and L, -11m1t h * exist, and is in the strip
(36). We now show that

hm——Zh—h* 41)

n—w N j=1

in the sense of both pointwise and L ,-convergence. Let e >0
be fixed, and n. be the corresponding index for which
|h* —h,| < efor any j>n,. We may then write for n>n,

h*|<e 3 (%] +A)

to 3 e

nj=n+1

1 n
rPk
ne)
— ] €
n
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né
<2—S+(1 —
n
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j=1 n]‘-n7p+1

p el
— Sl Y

minwjmﬂ

the even and odd limits of Lemma 4 coincide, and the com-
mon value % * is a non-negative solution of Eq. {6b).

Proof: If Eq. (15) holds then the operator B is a contrac-
tion. If then A “5h ° we see from Eq. (39) that the contradic-
tion

b —hell = |1B(h)— Bh) <[k —h|

would follow. On the other hand, if the kernel K is symmet-
ric, integration of Eq. (38) over (a,b ) gives at once

jﬂwm—h%na=a

where the integrand is non-negative. Thus we have
h°=h*=h* and from Eq. (39) it follows finally that
h * = B (h *) which completes the proof.

Stronger results follow from the next theorem which
gives the main result concerning existence of non-negative
solutions.

Theorem 5: Let « > 0, and consider the iterative scheme

b=

Then the sequence 4, converges pointwise and in the
L,-normtoalimit/ * in the strip (36) which is a non-negative
solution of Eq. (6b).

Proof! All h,,, starting from 4,, are in the strip (36). For
any fixed n, and p with 1<p <n we have

Zh) 0<h,<S. (40)

n ;=1

r
and therefore the left-hand side can be made smaller than

any fixed positive number, provided » is large enough. This
proves Eq. (41) for the pointwise convergence. The proof of
convergence in the L,-norm proceeds in a similar manner
with moduli replaced by norms. (It is understood, here and
elsewhere that pointwise properties are “almost every-
where”; thus.S could even diverge on a set of zero measure.)
Note from Eq. (41) that the nth approximation is, when 7 is
large, just the arithmetic average of the preceding ones. Now
from Eq. (40) and the continuity of B it follows that
h* = B(h*), and the existence theorem is complete. We note
in passing that the pointwise convergence B ((1/n)Z7_, 4} to
B (h *) can be proved even without continuity of B if we as-
sume that 7' maps sequences in L, converging in norm into
pointwise converging sequences.

We now consider the problem of uniqueness of non-
negative solutions. To this end note the following.

Lemma 6: Let @ > 0 and Assumption 2 hold. Then B ?is
an S-concave operator.'®

Proof: From Eq. (33) we get directly, for any he L,
h>0
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ayh)S<B?(h)<B,(h)S, ayh)=a,[B(h)],
Boh)=Bi[B(k)). (42)
We then consider, for a fixed non-negative hin L,, and for a
fixed ¥ with 0 <7 < 1, the quantity B }(y4 ); it can be shown
that there exists a number 7 = 7(y,4 ) > 0 such that
Byh)>(1+4)yB(h) (43)
and therefore, by Eqs. (42) and (43), B *is S-concave. Proving
Eq. (43) is equivalent to proving
14 aTB(h)>(1 + 7)Yl +aTB(yh)),
which is satisfied if
l—y+aT[B(h)—yB(rh)]
v[1+aTB{yh)]
It is then sufficient to choose (since T is linear and positive)

0<7y<

1—y a a(yh)
0<n<
v 1+a| TS| 1+dlT]| 4]
l—y a TB(yh)
v 1+aT| Al 1+aTB(yh)
or by Eq. (5)
0<7]<1—'7’ 4 a,(vh) (44)

vy 1+alTIISI 1+alTl Al
where the right-hand side is positive by Assumption 2.

Our final theorem gives sufficient conditions for uni-
queness of non-negative solutions.

Theorem 6: Let @ > 0 and suppose either « satisfies Eq.
(15) or Assumption 2 holds. Then Eq. (6b) has a unique non-
negative solution 4 * given by Theorem 5.

Proof: If Eq. (15) is satisfied, B is a contraction and / * is
necessarily the only non-negative solution, for if another
non-negative solution h existed, with h #h *, we would im-
mediately get the contradiction

|a*h||=|Bh* —Bh)|<|h*—R].

If Assumption 2 holds, then by the previous lemma, B * is S-
concave, and as such it has at most one non-negative fixed
point."? Since all fixed points of B are also fixed points of B 2,
and one non-negative fixed point 4 * of B exists, then 4 * is
necessarily the unique non-negative solution of Eq. (6b).

Corollary 1: Let the hypotheses of Theorem 6 be satis-
fied. Then the iterative scheme (40) converges to the same
limit 4 * whatever the initial guess 4, in (40), and further the
iterative scheme (37) also converges to 4 * for any initial guess
hg, with 0<ho<S.

Proof: The first part of the corollary is a direct conse-
quence of uniqueness. The second part follows from noting
that the even subsequence is just the whole sequence for the
equation 4 = B %(h ) with initial guess 4,, and converges thus
monotonically'® to 4 *, the unique non-negative fixed point
of B? and B. The same occurs to add subsequence, which is
the whole sequence for 4 = B *(h ) with initial guess 4.

V. CONCLUSIONS

We have given existence and uniqueness theorems for
the solution of the nonlinear Eq. (1) under assumption of
non-negativity and a couple of very mild smoothness re-
quirements for the known term .S and linear kernel XK. Most
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of the theorems are constructive, since they provide the way
to evaluate the solution. Particular emphasis has been given
to the existence of non-negative solutions. For a >0 a non-
negative solution always exists, and is unique under a very
weak positivity assumption on K and S. In any case it is
unique if & is small enough. On the other hand, for a <0
there is at least one non-negative solution as long as the mag-
nitude of a is small enough, but it is in general not unique.
Moreover, for @ <0 and |a| large, non-negative solutions
can fail to exist.

The analysis of bifurcation with respect to the param-
eter a deserves further investigation.

Another tool to get more insight into the problem
would be a generalization of the analyticity argument used in
Ref. 5 for the Chandrasekhar H-equation. It is always possi-
ble to rewrite Eq. (1) as

[h(x)]~1=1+af K (x, )k (y) dy (45)

and assuming that the new kernel satisfies

K(x, y)K(—x2)=K(p2) K(x,y) + K (z,y) K(— x,2), (46)
one gets the factorization

[A(x)h(—x)""'=T)

b
=t+a[ Ky +K(=xl] dy,
(47)
which could allow some explicit results depending on the
analyticity properties of the “dispersion function” T (x). An

example of a kernel satisfying Eq. (46) is provided by the
straightforward generalization of Eq. (32)

¢ (x1¥( y)
Kxy)=—""—"~— 48
T 4
with ¢ ( — x) = — ¢ (x), for which
- 2 [P
Tx)=1+2a¢ (x)L 570 — 67) dy.

This approach will be, hopefully, a matter for further re-
search.
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The notion of star diagram, previously introduced for the study of Green functions of nonlinear
differential operators is formulated in an algebraic frame. Two theorems are presented which

make the structure of these functions explicit.

PACS numbers: 02.30.Tb, 02.30.Hq

1. INTRODUCTION

In preceding papers,* we introduced the notion of star
diagrams, with the object of making the retarded n-point
functions of some nonlinear differential operators explicit. A
v-star, v = 0,1,2,...,° is a diagram of the form

~

with which is associated the kernel

E, (t;Ty..,7,)=0 (t — sup(7y,...,7, )@(t) —@lsup(y,. 7, )
where & is a given function. A star diagram is constituted by
a juxtaposition of stars, tied by some of their extremities; in
addition, to each of the extremities is assigned a cross that
represents the source function % (vanishing for negative 7).
With such a diagram is associated the integral, over the var-
jables , of the product of the kernels and source functions
involved. For instance, we have the correspondences

>_"—"—" "’J- dr, dr, drs dry (T (T (73)(7,)

X Es(6;71,72,T3) Eot;73,74),

OX —’f dry dry () Ertyr, o)

In addition, an exceptional diagram represented by a single
cross has to be introduced, with the correspondence rule

X —(t )EL dr (7).

Disconnected diagrams may appear and the function asso-
ciated with such a diagram is the product of the functions
associated with each of its connected components.

The aim of the present paper is to prove the following
theorems.

Theorem 1: Let P be a polynomial with constant coeffi-
cients,  a given function, and 7 an arbitrary function of ¢,
both continuous for >0 and vanishing for ¢ < 0.* The retard-
ed solution of the differential equation

X _ at)Plx) = i) (E)

dt

is represented by a linear combination (generally infinite) of
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star diagrams, with @(t ) = f;a(r)dr.

Theorem 2 : Any star diagram is equivalent to a linear
combination of tree star diagrams.

Theorem 1 allows us to give explicit algebraic expres-
sions of the n-point functions G, , the latter being defined as
the kernels of the expansion of x(f ) considered as a functional
of 7, that is to say,

o

1
x(t) = Z; d1yd7, G (6T e T )T )T ).
n=17%

For instance, the kernels associated with the two preceding
examples are, respectively,

4 sym{E(67,75,75) Elt;73,7,4))
and

2 Byt

where sym means the symmetrization on the r-variables. Af-
terwards, Theorem 2 asserts that x(¢ ) can be expressed exclu-
sively with the help of trees.

Thus the present results improve that of Ref. 2, in which
stars of a more complicated structure appeared (stars with
dressed centers), resulting in completely explicit expressions
of the G, ’s in the only case where P reduces to a monomial.
In fact, they completely establish the conjecture put forward
in Ref. 2.

Il. PROOF OF THEOREM 1

In a first step, let us consider the star diagrams as ab-
stract symbols (i.e., without reference to the value assigned
to them in the Introduction}. Let .« be the free commutative
algebra with unity generated by all the connected diagrams.
In this algebra, the product of generators 4,4, -+ 4,, is iden-
tified as the diagram having 4,, 4,,...,4, as connected com-
ponents. Let d be the derivation of .7 defined as follows: for
any diagram A, the derivative d4 is the sum of all possible
diagrams obtained by removing from A one center of star. In
particular, ‘ v

X =0, d+=1, d . =X=X,

Ve
v v
3 nenl = x ~—<+x x

8/‘©x= 2 x—+—x , and so on.

XX ,
It is obvious that .« may be endowed with a structure of
graded algebra, the degree of a diagram being the number N
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of stars it contains. Accordingly, we write & = @ 2_ o v,
and we have .7, C .o/ ., -

Now, according to the expression of the kernel E,,, the
derivative d /dt of the value associated with a v-star is given

by

d,*vx

4NV ) xex,
i alt) XX,

Nl e v
v

this being true whatever may be the diagram in which this

star is inserted. This implies that, for any regular diagram A
(that is, not having any connected component reduced to a
single cross), we have

94y =alt)aa), (1)
dt

where (4 ) denotes the value of 4.

Then, let us try to construct the retarded solution x of
(E) under the form x = (X ), where X is a combination of
diagrams of the form

X = X + (regular terms). (2)
In that expression, it will be necessary to admit a combina-

tion of an infinite number of terms. Thus the problem is
posed in the (infinite) direct product

7 = H,@{N,

which contains .&7.> The corresponding value (4 ) of dc.,
then must be considered as a formal power series with re-
spect to a. The equation (E} will be satisfied if we have

X =P(X). (3)
To solve this equation by a recursive process, let us introduce
for any element 4 of ./, the expansion

A: z AN! ANEMN,
N=0

so that (2) and (3) give

X, = X, (4)

Xy, =PX)y, N>0. {5)
This last equation will furnish a solution for Xy |, in terms
of the X, 0<k<N, which are the only ones occurring in the
right-hand side, if one can show that 9:«/ y , | —7 , is sur-
jective.

In fact, let us show that  admits right inverses: Let M
be any operator such as [0, M ] = 1; if Dyeo/ y we can write
(=1

P M"”‘a"“DN—(—k—‘l)kM"a"DN
=y '
:TGM"a"“DN. (6)

Since 3¥ * ' Dy = 0, by summing {6} over k, we obtain the
identity®

o (=1 gk
y=0( > =L _mrar-1p,
k=1

k!

=0 Nil(—l)k_leak—l‘D )
N k! N

k=1

By putting Dy, = P (X )y, this gives
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N+1 ) -1
Xyir= 3 L —M*F T P(X)y, (7)
= k!
which satisfies (5). It remains to exhibit an operator M such
as [0,M] = 1. An immediate solution M, is given by
M4 )=+4, Y4ed . Since M, is simply the multiplication
by the diagram - , one easily verifies that the corresponding
solution of (3) can be identified with the solution of the scalar
equation

d

—X=P(X), X¥a=0=7 (8)
Jda

by the correspondence rules

¢, X—»n,

where a and 7 are real variables, and X is a function of these
variables. However, such a solution does not satisfy (2). This
condition will be satisfied if we choose M so that the trans-
formed M (4 ) of any diagram 4 is the diagram obtained by
adding to 4 a point and joining it to each cross of 4. With this
definition, all the terms in the right-hand side of (7) indeed
have a point joined to each cross and therefore are regular.
This completes the proof of Theorem 1.
For example, the first few terms of the solution for

Px = (a/2)x* + (b /6)x°

are given by

b
2
+—— ———X<<+ x——%
Sab Q ab ‘:
i %‘

o 9)
Passing to the retarded solution x = (X ), we obtain the
n-point functions:

Golt;71:7,) = aBo(67,,75),
G5(571,7,T3) = BES(8;71,7,,75)
+ 3@’ [sym(E(t;7), 7o) Es(t;71,72,75))

- %(E3(t;7'1,7‘2,7'3))2],
and so on.

One easily verifies that, as soon as the degree of Pis
greater than 1, diagrams with loops appear in each of the
Xx’s for N> 1; they come, for example, from the terms with
k>2in (7) because of the form of the operator M. Theorem 2,
that we now prove, allows a representation of x(¢ ) involving
diagrams of a simpler structure, namely tree diagrams.

lil. PROOF OF THEOREM 2

If (4) = (B), 4, B € o, we say that the two elements
A and B are equivalent, and write A~B. Let us prove that
any diagram A is equivalent to a linear combination of tree
diagrams.
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In a first step, let us consider the following diagram
reduced to a loop:

It will be necessary to distinguish the points (and the crosses)
of A, according to their labels, and consequently we denote
as d, A, the part of d4, obtained by the derivation on the

only point k. We then have

= i 3kA,,

k=1
We shall show that 4, is equivalent to one combination of
the diagrams obtained from 4, by suppressing some con-
necting lines of the type (¢’'a), 1<a<n. Such a term can be
denoted by a symbol of the form (B, B, --B, )", where B, is
the diagram

Bp T ek e
D points,
lying along an arc of the loop 4,,, and m is the rank in the
sequence B, --B, of the point which coincides with the
point of label 1.

The equivalence we want to show is 4, ~C,, with

. .
Z 3 3 BBy (10)
pj;lk m=
k

Clearly the right member of (10) is invariant under the cyclic
permutations of (1,2---n). A further notation for the terms
occurring in (10)is B? B, B, , 1<g<gq,, where B, is the
section containing the point labeled 1, and g is the rank in the
sequence B, --B, of this point. We have

(Bpl-"BPk)mz :::n(p‘+ e B B B

withp, + « + p, <m<p, + p, + - + p,;, | » 50 that the
expression (10) becomes

C,= (-1
k=1

= (Giqp) g =1

Denoting by D, the diagram
2 (r+2)
b e R [

lying along the loop, we have

n
k—1
9,C, = Z(_l) EDB qu @ —r—1

k=1 Fyeqp) =0

g1

k

Zay=n

i=1

n—1 n—1

- EDr Z Z Bp.
r=0 1=0 Pis.P)
, p>1

Y pi=n—r—1
i=1

B, [(— ~ 1M1 = 8,)]-
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The right member of the last equation is equal to d,4,,, so
that ,C, = d,4,,. Due to the cyclic invariance, this gives
9,4, =9,C,, 1<k<n.

To continue to distinguish the points (and the crosses) in
the value of the diagram, we have to affect, instead of a,
different functions a,, 1 <k<n, to the different points, and
not to integrate on the r-variables attached to the crosses.
The value so defined, denoted by ({ )), is then a kernel
[containing the factor I, @ (t — 7, )]. Formula (1) for regular
diagrams is generalized into

%«A» = Sl l(@A)), (1)

where & runs over the set of the points.
Since A, and C,, are regular, formula (11) implies

4 (anyy = &
E“An))_dt“c"))'

These functions being continuous and retarded, as can be
easily verified, this yields the equality ({4,)) = {{C,))
and finally (4,,) = (C,).

For example, for n = 2, we have the equivalence

A A A A
(12)

and, between the corresponding kernels, the equality
(@i(2) — @;(sup(ry',72 )@t ) — @a(sup(ry’,7,")))
= (@\(t) — @\(m))(@ft) — @yfsup{r,’,7,)))
+ @,(2) — @\(sup(r,, 72 W@alt) — @of71))

— (@,(t) —a\(r et ) — ayry)).

Thus, each loop of the type A4, can be replaced by a
combination of diagrams deduced from A,, by suppressing
one connection at least (open loops).

In a second step, let us consider the diagram 4 |, ob-
tained by adding to 4, an arbitrary number of crosses arbi-
trarily connected to some of the points &, 1<k<n,and let C,
be the combination of diagrams then obtained by adding to
each termin C, the same crosses and connections. The equa-
tion d, A, = d, C,, V k, immediately implies 9, 4 /,

=d C,,, and, therefore, ({4 /)) = ({C.)), then
A;)=A(C,).

The last step consists in considering an arbitrary dia-
gram A in which a loop is distinguished. The subdiagram of
A constituted by all the points of the loop and all the crosses
connected to these points is of the type of 4 /, considered
above. This subdiagram is nothing but the set of the stars, the
centers of which are the points of the loop. In the value
({4 )), this subdiagram contributes by the factor ({4 ’));
since ({4 ;)) = ((C)), the same value ({4 ) ) is obtained
by replacing in 4 the subdiagram 4 / by C /.. In each of the
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terms so obtained, the distinguished loop is open.
By iteration of this process, all the loops of any diagram
A can be successively opened, that finally leads to a combina-
tion of tree diagrams. Q.E.D.
For example, the solution (9) for P, = (a/2)x* + (b/
6)x°, is equivalent to X’ with

a b a’
X' =X +— #ox + — »< e

2 6 +4

et
>t X L 4

+24 + H—{

b?

- 13
+2 ;—r—< + (13)

Remark: The equivalence A, ~C, proved above privi-
leges a rotation sense on the loop. Choosing the opposite
sense furnishes, in general, a different equivalence A, ~C, .
When 4, isinserted into a larger diagram, the use of either of
these equivalences may lead to different diagrams even after
the removal of the labels of the points and of the crosses. In
particular, this property can be used to obtain some equiva-
lences between tree diagrams. For example, from (12), the

two equivalences for the diagram ___'Q
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lead to the relation

;—4:+H*Jk'—-x—>‘r0—*ﬂ —

z}{ﬂwﬂw—w%

Thus the representation of the solution x(¢ ) of (£ ) by a series
of star diagrams is not unique, even when restricted to an
expansion involving tree diagrams only.

Finally, let us notice that our results have not been ob-
tained by a direct treatment of the equation (E); on the con-
trary we needed to introduce a priori the algebraic structure
of abstract star diagrams, then to transpose in it the equation
(E).This principle can be extended, and more general cases
will be studied in a forthcoming paper.

'J. C. Houard, Lett. Nuovo Cimento 33, 519 (1982).
2J. C. Houard and M. Irac-Astaud, J. Math. Phys. 24, 1997 (1983).
Here, we call a star that which was called a simple star in Ref. 2.
*The vanishing of @ for ¢ < O needs to be assumed when P (0) #0 only; indeed,
if P(0) = 0, the equation (E) is identically satisfied by x(t} =0, t <0, Va.
5N. Bourbaki, Eléments de Mathématique (Hermann, Paris, 1955), Book I1,
Chap. II.

“When the operators M and d are, respectively, replaced by the multiplica-
tion by x and the derivation d /dx, this identity reduces to a formula known
for formal power series.
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Formulas for the eigenvalues of the Laplacian on tensor harmonics

on symmetric coset spaces
K. Pilch® and A. N. Schellekens

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794
(Received 13 March 1984; accepted for publication 8 June 1984)

On a symmetric coset space G /H the eigenvalues of the Laplacian and the Lichnerowicz operator
acting on arbitrary tensor harmonics are given in terms of the eigenvalues of the quadratic
Casimir operators of G and H. Explicit examples for S,, CP,, and real (complex) Grassmann

manifolds are analyzed.

PACS numbers: 02.30.Tb

1. INTRODUCTION

In the Kaluza-Klein dimensional reduction of higher-
dimensional gravity, gravity coupled to gauge fields, and su-
pergravity,' the spectrum of the fields in the reduced model
is given in terms of the eigenvalues of the differential opera-
tors acting on the internal compact space.” In most of the
cases which have been considered the internal space is a co-
set manifold G /H, where G is a compact Lie group and H is
its closed subgroup. The operators entering the mass formu-
las are usually the Laplacian (J and the Lichnerowicz opera-
tor 4 acting on tensors [spinors) of the internal space. The
metric on G /H is G invariant. This implies that []and 4 are
also G invariant, so their eigenfunctions (eigentensors) fall
into representations of G. It is convenient to expand all the
fields into harmonics of G and G /H and then calculate the
spectrum of [J and A. This program, proposed in Ref. 2 was
later developed and applied both in gravity and supergravity
models.>”

In this paper we investigate the spectrum of the Lapla-
cian and the Lichnerowicz operator acting on tensor (spinor)
harmonicson G /H when G /H is asymmetric coset space (for
a list of symmetric spaces see, e.g., Refs. 6 and 7). We show
the following theorem.

Theorem: Let Y be a harmonic on G /H which trans-
forms under an irreducible representation T (resp. D ) of the
group G (resp. H ). Then the eigenvalues of J and 4 are given
by the following formulas:

0¥ = [CHT) - CHD)]Y,
ay=cgryy,

where C§(T') [resp. C ¥(D)] are the eigenvalues of the qua-
dratic Casimir operators of T (resp. D).

This result is natural if one takes into account the G-
invariance of [J and 4. It was proved for some particular
cases: for scalar harmonics,’ for the Hodge-deRham opera-
tor acting on antisymmetric tensors on semisimple groups®
and on S, and CP, (see Ref. 9), and for transverse, symmet-
ric tensors on S, (see Ref. 10), but we do not know about any
other generalization. Thus we think it is useful to present
here a short proof of it. It is given in Sec. II. Section III

®On leave from the Institute of Theoretical Physics, University of Wro-
claw, Wroclaw, Poland.
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contains illustrative examples of the harmonics on spheres
and Grassmann manifolds. In the Appendix we give algor-
ithms for the calculation of Casimir operators on representa-
tions of unitary, orthogonal, and symplectic groups, which
are simpler than those usually cited in the literature.

1. HARMONICS ON SYMMETRIC COSET SPACES

A harmonic on a coset space G /H in the irreducible
representations 7 of G and D of H is defined as a function ¥
on the group G which satisfies the following properties®”®:

(i)  T(D(h)Y(go)=D(h)T(g)Ygoh
886G, heH,

(1)  Yi{ggo) = T(g)Y (g

(ii) Y(got)=D(h )Y (go)

Consistency of (ii) and (iii) at the identity requires that
the representation D appears in the branching of 7' under H.
Usually one uses a particular representative of the harmonic
which s a function on G /H. For this let us choose an embed-
ding L: G /H—G. Toeach pointx of G /H, L assignsits repre-
sentative L (x)in G. (In general, L is defined only locally, and
can be thought as a “coordinate system” on G /H.) Then the
function Y*, Y% (x): = Y (L (x)) is the representation of ¥ in
the gauge L. Using (ii) we see that the harmonic Y is com-
pletely determined by its value at the origin

Yx): =Y x)=T(L (x))Y(0), 0=eH. (2.1)

The Lie algebra I of G can be decomposed into a simple
sum /" = /T Y, where [T is the Lie algebra of £ and 7'is an
Ad H-invariant subspace. Choosing a basis {#,,] = {,,¢, ],
telli=1,..,dim H,t,eY,a = 1,..,n = dim G /H, the con-
dition for G /H to be symmetric in terms of the structure
constants ¢, “y([Zarsty | = Car ntp) is®

a

cl, J =Cija zcaYB =0 (22)

Let &™ = (&', ) be the left invariant one-forms on G
and 0 = L *&°, o' = L *&' their pullbacks onto G /H.On a
symmetric space the ©*x)’s form a basis of the cotangent
space at x and w®; = w'c,“; is the Riemannian connection of
the G-invariant metric g on G /H obtained from the invariant
Killing metric on G by identifying ¥ with the tangent space
at x =0 (see Refs. 6,7,11). In terms of the vielbein e, (x),
w*eg) = 5%4 this metric is given by
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gle, (x), eg(x)) = 745, (2.3)
where 7,4 is the Killing form %,y = ¢ Tr(Ad t,, Ad ty) re-
stricted to 7. For convenience one can choose this form so
that it is proportional to §,,y. This is always possible as G is
compact.

The forms ' and »® can be found using the following
expansion’:

L 'dL = o't, + 0°,. (2.4)

Here H acts on the tangent space as a subgroup of SO(n).
If we are interested in the expansion of tensor fields on G /H
into harmonics the representation D must extend to a repre-
sentation of SO(n).

The covariant derivative of Y along e, is®

D, Y(x)=e,Y(x)+ o, x)D(t,)Y (x). (2.5)
From (2.4) in the representation 7 acting on ¢, we get

e, T(L(x))=TI(Lx)w.Tt)+ T(,)]. (2.6)
Thus (2.5) becomes simply

D, Y(x)=T(Lx)T(,)Y(0)=T{Ad L (x)z,)Y (x).

(2.7)

Here we used that T'(¢,)Y (0) = — D (t;)Y (0). From (2.6) for
T = Ad we obtain

D, (Ad L (x)tg) = Ad L (x)(c,'st;). (2.8)
Asc,’s = —¢5's

7%*D, T (Ad L (x)tz) = 0. (2.9)

Thus the Laplacian on Yis
QY (x) = 7D, D Y (x) = n*’T (L (x))T (¢,)T (t4) Y (0).
(2.10)
Now we observe that
NPT (t)T(t5)Y (0) = [7""T (ta) T (t5) — 7D (£)D ()] ¥ (0)
= [C3(T) - CF(D)1Y(0), (2.11)
which proves the first part of the Theorem.
The Lichnerowicz operator acting on a tensor harmon-
ic ¥, ..., (for simplicity of notation Y is a covariant tensor) is
defined as follows'”:

AY, o =0Y, .
k i k i N
+ SR Y ggea,+ 2 RGP ) AP
i=1 =1
(2.12)
Now let us recall that
k X
D(t)Yga, = — 3¢ Yarta, (2.13)

j=1

The curvature and the Ricci tensor of the connection w%g

are'!

(2.14)

It is easy to see that all the curvature termsin (2.12) sum up to
7DD (1)Y,,.., = CHD)Y, (2.15)

Comparing it with (2.11) we obtain the second part of the
Theorem.
When Y is a totally antisymmetric tensor the Lich-

a — i a _ a
R s — —CypsCi g RBr_R Bre®

1@k 1ot
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nerowicz operator is equal to the Hodge—deRham operator.
Thus our result agrees with Refs. 7 and 9.

In the next section we illustrate the Theorem with var-
ious examples. For this one needs to know how to construct
harmonics on particular coset spaces. A general method can
be found in Refs. 2 and 4. Here we outline it briefly.

Let @ “; be matrices of some irreducible representation
of the group G. Then

P5(880) = P*c(8)P “5(80) = :Tc(&)P “5(g0) (2:16)

Dplgoh ) =D (go)® Bk ) = :Dp(h )P c(go)-
(2.17)

In order to obtain a set of harmonics satisfying (i)—(iii) one
must decompose the lower index into irreps of H. The basic
formula for the covariant derivative of such harmonics fol-
lows from (2.17):

D, ®p(x) = P (x)D (2,). (2.18)

lll. HARMONICS ON SPHERES, PROJECTIVE SPACES,
AND GRASSMANN SPACES

In this section we will give an explicit construction of
tensor harmonics on S,, CP,, and the real and complex
Grassmann spaces

g — M (P>‘1),

SO(p) ® SO{g)

(3.1)

- _Stb+q

" S(U(p)e Ulg))

with CP, = C,, and S, = S,,. Harmonics on these spaces

can be constructed as symmetrized tensor products of basic

vector harmonics. We can calculate the eigenvalues of the

Laplacian on these harmonics directly and thus demonstrate
the general theorem.

In the following, SO (p + g) and SU(p + ¢) will be de-
noted generically as G, SO(p) and SU(p) as H ,, and SO(g) and
SU(g) as H,. Vector indices of G are denoted as A,B,C,...,
those of H,, as a,b,c,..., and those of H, as @, B,7,... . Every
vector ¥ of G splits into two vectors V* and V' * of H, and
H,. The (anti-Hermitian) generators 7y of I'=1I® 7 can
be chosen in such a way that, in the vector representation of
G,

p>9),

Tr(TyTy) = —26yp- (3.2)
The generators of /7 and 7 are subsets of those of I".
We choose the following set of generators of 1
(Taa )AB = 62’5113 - 63503’ on Spq’ Cpq’
{3.3)
(Taa )AB = 1(5:: 5aB + ‘S/a’ 603 )’ on Cpq :

These generators correspond to the components of the vec-
tors of the tangent space group.
To define the Laplacian and Casimir operators we use
the following invariant tensor:
Nnm = %Tr(TN TM)’ Spq’
(3.4)
Inme =TTy Ty), €

Pq”
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This implies a choice of metric on these spaces [see (2.3)]. The
Laplacian is in each case defined as

O= ) 7VMDy Dy,
N,MeY
ZDm D,, onS,,,

=11 (3.5)
Py S(DseDuy + DogDas)y 00 C,y.
Using formula (2.18) we can calculate the effect of covariant
derivatives on the matrices @ *; of the vector representation
of G. By splitting the index B into its H, and H, components
we get the covariant derivatives on the harmonics Y*, and
Y AB:

OnSpq, Cpq, DaaYﬁAzsaBYaAi DaaY:= _5abyg;

(3.6)
onC,, D, YA=ib,Y? D,Yi=ib,Y3.
Using {3.5) we find that on both spaces
oy4, = —qY4,, OY% = —pY*,. (3.7)

Irreducible tensor harmonics can be obtained by multi-
plying N vector harmonics Y#, with M vector harmonics
Y4,, symmetrizing the three types of indices according to a
set of Young diagrams, and subtracting traces if necessary.
(The spaces S,, and S,,, require a separate discussion, which
will be given below.) The three Young diagrams specify irre-
ducible representations R of G, r, of H,, and r, of H,. A
harmonic exists only if the representation (r,,7,) of H, ® H,
is contained in R.

In the case of C,, there is the additional requirement
that the correct U(1) charge must be obtained. This can be
achieved by considering all U(p)® Ulg) representations
(r;,r;) which contain (r,,r,) (r, differs from 7, by additional
columns of length p). If r, ® ; contains R, then R contains
the representation (7,, 7, ) in its branching. (Rules for tensor
products of Young diagrams are, for example, given in Refs.
13 and 14.) The correct U(1) charge can be obtained by add-
ing the right number of columns to r, and/or . [There is of
course a quantization condition for the U(1) charge which
makes this possible.] A similar rule can be obtained for Spgs
but with the additional complication that a representation r,
or r, can appear as a trace of a large representation. The
precise formulation of this rule is not important for our pur-
pose.

When [ acts on a properly symmetrized product of N
basic harmonics Y and M harmonics Y4 there are contri-
butions from O acting on the factors in the product and
*“cross terms” with covariant derivatives acting on different
factors. It is easy to show that in fact all cross terms between
vector harmonics with the same type of lower index vanish.
[For S,, this is only true for those representations (r,, 7,)
that do not appear as trace terms. These trace terms require a
separate discussion, but since our only purpose is to demon-
strate the general result, which covers this case, this is not
necessary. The case ¢ = 1 also requires a separate discussion,
which we will give below.]

The nonvanishing cross terms are

3457 J. Math. Phys., Vol. 25, No. 12, December 1984

S,: 2D, YAD, YP= —2YEY4,
L (3.8)
C,: D, Y2D,,Y?+D, YiD, YP= —2YEYL

P9

This operation interchanges the upper indices of the har-
monics. The sum of all such interchanges for the complete
product can be expressed in terms of the operator £2 defined
in the Appendix. Then we get, using (3.7):

OY =(— (Ng + Mp) — 202, +20, +22,)Y, (3.9)

where Y= Y[R, r,, 7,) and 12, 22, and {2, act, respective-
ly, onthe G, H,,, and H, indices of Y. Notice that the result is
the same for S, and C,,.

To compare with the Theorem we need the (properly
normalized) Casimir operators on the representations R, r,,
and 7. For the nonabelian groups these expressions are giv-
en in the Appendix. For S, one easily reproduces (3.9). For
C,, thereis an extra contribution from the U(1) factor. In the
vector representation of G, the U(1) charge, normalized ac-
cording to (3.2) is

iv'2

Q = ———diag(q,....q, — p,..., — D)
vgplg + p)
with Tr (Q) = 0, (3.10)
so that

2
QY (R,r,.r,) = ['——(Nq - Mp)] Y(Rrpor,).
vpalp + q)

(3.11)

According to the Theorem we get then

oy =[ - v+ )p + - F22)

+N(p—§)+M(q—%)

1

+ ————(Ng — Mp)* — 22, + 202, + 2.rzq]x
qplg +p)

(3.12)

This is indeed equal to (3.9).

Now we return to the special cases ¢ = 1 and ¢ = 2 for
S,,- The case g = 2 is special only because traceless tensors
of SO(2) are not irreducible. All traceless symmetric tensor
have two components, with “helicities” + M, for a tensor of
rank M. Both components have the same Casimir eigenval-
ue, correctly given by (A7). Therefore the reducibility of
these tensors is irrelevant, and (3.9) is valid.

As remarked before, if ¢ = 1 there is an extra contribu-
tion due to cross terms among the scalar harmonics:

2D,Y4D, Y4 =2Y4,Y" (3.13)

Here we have omitted the indices a, which can only take one
value. This expression can be evaluated by using

+1
iYﬁYf:pz YiYE—_Y4YP= —y4Y* (3.14)
a=1 =1

[the first term is equal to 8 ,, and vanishes because the repre-
sentations of SO(p + 1) are traceless]. Thus we get an extra
contribution M (M — 1). Since the M scalar functions Y can
only be in the completely symmetric representation, this
cancels the term 242 in (3.9). Therefore we get the following
results for harmonics on a sphere S,,:
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OY(Rr)= [ — (Mp + N) — 20, +22,]Y (R,
(3.15)

where R and r are tensor representations of SO (p + 1) and
SO (p) of rank N + M and N.

These harmonics exist only if the Young diagram of R
has in each column at least as many boxes as 7, and at most
one more. If R has precisely one extra box in each nontrivial
column of » harmonic Y (R,7) is transverse, i.e.,

DUydrdvem =g (j=1,.,N). (3.16)

ay-ay
This is a consequence of the fact that, according to (3.6), the
divergence operation removes one box from r. For trans-
verse harmonics the eigenvalue of £2; — {2, can be calculat-
ed explicitly, and we obtain

Qr’(nM)= — (M*+Mp—1)— N\YT(r,M),
(3.17)

with #, ¥, and M as defined in (3.15). Remarkably, the eigen-
value depends only on the rank of the tensor corresponding
to the representation 7, not on the symmetry of its indices.
Our result (3.17) agrees with the one obtained in Ref. 10 for
transverse symmetric tensors.

After the completion of this manuscript we have found
that our formula (2.11) has also been obtained by Strath-
dee.'
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APPENDIX: SIMPLE EXPRESSIONS FOR THE
EIGENVALUES OF THE QUADRATIC CASIMIR
OPERATOR FOR SO(V), SU (V), AND Sp (V)

In this appendix we present some simple expressions for
the eigenvalues of the quadratic Casimir operator C, on re-
presentations of SO (), SU (¥ ), and Sp (¥ ), defined with
symmetrized tensors. We denote a tensor of rank r with in-
dices symmetrized according to some Young diagram S as
Tipon)s- We consider the following representations:

Tiuysnys: SU(N), SOWV), and Sp (),

(A1)
T

alpyop,]S?
Here y, is a vector index and « a spinor index. To obtain
irreducible representations we must impose additional con-
straints:

SO () (spinor representations).

1T pyogys =0, 1<IS<R, (A2a)
T appyys =0, 1<ISI<, (A2b)
7/:5 Ty [#r,]S = 0, I<igj<r, (A2c)

where %*" is the invariant tensor of SO(V ) or Sp (V) and ¥4,
are the Dirac matrices.

The Casimir operators on these representations can be
expressed in terms of the following operator:

.QT['“],,‘#r]S = 2 T[.“l"'f‘f"l‘i'"”r]‘s’ (A3)

pairs
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i.e., {2 is the sum over the interchanges of all pairs of indices.
Using the symmetry properties of Young diagrams {see, e.g.,
Ref. 13) one can show that the symmetrized tensors are ei-
genvectors of this operator, with eigenvalue

W =3 2= 3 & (A4

i=1 i=1

where f; and g, are the length of the ith row and column of
the Young diagram S, and #, and #, the number of rows and
columns.

Consider first the group SO (V). We choose the follow-
ing generators for the vector and spinor representation:

(Mpoylv :5’2601/ _&;6;)\/! (Mpa)a,B :‘%[yp’yo]aﬂ'

(A5)

To get a normalization of the Casimir operator which is con-

sistent with the results of Sec. III we use the invariant tensor
{2.4), and obtain

C,=1SM,_ M, (A6)
po

Acting on a symmetrized, traceless tensor of rank  this oper-
ator has the following effect:

CZT[,ul.“y,]S = — (N = 1)+ 202)T, (A7)

To get the eigenvalues of C, on spinor representations we
include extra terms coming from C, acting twice on the
spinor index and once on a spinor and a vector index. These
terms can be calculated easily with the help of (A2c). The
result is

CZ Ta

Bpep,]Se

s= =N+ ININ=1)+22)T 5 pys-

(A8)
Thecalculation of the eigenvalues of C, for SU (N Jand Sp(V )
is completely analogous.'¢ On the tensor defined in (A1) the
eigenvalues are

— (N —r/N) +202),

[H1-a/]

for SU (N),
(A9)
— (1N + 1) +202), forSp(N),

The Casimir operator in SU (¥) has been normalized in
agreement with Sec. I1L.
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In this paper are investigated some differential geometry methods in the theory of the nonlinear
wave equation V’u = @ (u,(Vu|Vu)). A special class of solutions is discussed for which (Vu|Vu) is
constant on each level of the function . It is proved that levels of such solutions form in the space
of independent variable’s hypersurfaces with all principal curvatures constant. The general form
of such hypersurfaces is given. Then it is proved that via the method of characteristics it is possible
to construct (in principle) all the solutions of the discussed class. They may be obtained by

integration of an ODE of second order using a special class of the polynomial functions. Some new

solutions are given for equationsly = 44v° 4 3Bv* + 2cv + D, Ov = p exp v, Ov = sin v,

Ov = cosh v, and Ov = sinh v.

PACS numbers: 02.40. — k, 02.30.Jr

I. INTRODUCTION
Let (%, (- | - )) be an n-dimensional (1>2) pseudo-Rie-
mannian manifold (i.e., the metric ( - | - ) is nondegenerated

but not necessarily positive definite). All functions, tensor
fields, and manifolds are assumed smooth unless otherwise
specified.

We shall consider partial differential equations (PDE)
of the second order

Viu = & (u, (Vu|Vu)), (L.1)

where u: £ —R! is a function of the class C 2, Vu denotes the
gradient of the function u, and V? is the Laplace-Beltrami
operator'? with respect to the metric ( - | - ) (for instance in
the Minkowski space V? = O is the d’Alembert operator,
whereas for Euclidean space V> = A4 is the usual Laplace
operator). We are interested in the class of such solutions u of
the equation (1.1) that (Vu|Vu) is constant on every level of
the function u, i.e., (Vu|Vu) = a(u), where a is an arbitrary
function (of the class C') of one variable. Thus Vu
= @ (u, a(u)) = ;B (u) is also the function constant on the
levels of u, so

(Vu|Vu) = alu), Vu=_pu) (1.2)

Let u— (u) = :vbean arbitrary but invertible transfor-
mation of the dependent variable. Then

(Vo|Vo) = & Hu)a(u) = :a(v).

Voo =3 “(ualu) + & (u) - B(u) = B ), (1.3)
so the form of the system (1.2) remains unchanged. If ¢ and 8
are treated as arbitrary functions then system (1.2) charac-
terizes in fact the congruence of the levels of function u.

Note that if u satisfies the system (1.2} and ¢ is an inte-

gral of the second-order ordinary differential equation
(ODE)

alu) - 3 "(u) + B (u)d (u) = @ (& (u), a(u) - & *(u)), (1.4)
then, by (1.3), the superposition v = ¢ (#): & —R satisfies
Vi = @ (v, (Vv|V0)).

Thus from each solution of the system {1.2) we can generate
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with help of the solution of Eq. (1.4) the two-parameter fam-
ily of solutions of Eq. (1.1).

Next we shall consider the system (1.2). If a(4)=0, then
(Vu|Vu) = O; the function u satisfying this equation will be
called an isotropic one. This case will be investigated in Sec.
V, whereas Secs. I-IV concern the nonisotropic case. Fur-
thermore, if a(u)40 then [as is possible after the transforma-
tion u—v = & (1) with ¢ (1) = |a(u)| ~"/?] we may assume
that a(u) = + 1.

Il. GEOMETRICAL PROPERTIES OF THE LEVELS OF
THE FUNCTION U

Further on we shall restrict ourself to the case of the flat

space, i.e., when & is a vector spaceand ( - | - ) is the symmet-
ric nondegenerated bilinear form. The considerations below
may be generalized to the case when (& ,( - | - )) is a symmet-

ric space (i.e., V;R*,, =0, see Ref. 2).
Consider the system of equations
(VulVu)= + 1, (2.1a)
Vu = 3 (u), (2.1b)

where £ is an arbitrary function. In the language of the
Grassmann algebra (2.1b) can be written in the form
V(V2u) A Vu = 0. Equation (2.1a) is of the Hamilton-Jacobi
type. For the given values of the function # on a certain
hypersurface 2 C & we can solve (2.1a) by the method of
characteristics. In particular for the boundary condition

uls; =0, (2.1¢)
2 will be one of the levels of the function u. The condition of
transversality (that guarantees the local existence and uni-
queness of the solution) for Eq. (2.1a) means that in every
point of the hypersurface 3 there exists the nonisotropic
[with respect to { - | - )] normal vector. The hypersurface &
satisfying this condition will be called the nonisotropic one.

The method of characteristics' for the problem (2.1a)
and (2.1c¢) gives the following result. For x € 2 let 7, denote
the straight line passing through x and normal to the hyper-
surface X parametrized in such a way that
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dy, | dy« ) _

7:(0) =x and ( 7| s + 1

Let us assume also that the vectors dy, (0)/ds have directions
in accordance with the chosen orientation of the hypersur-
face 3. In the more general case of symmetric spaces we
must use geodetics instead of straight lines. If ¥ is nonisotro-
pic then the lines ¥, cover a certain neighborhood & DO Z.
That means that for y € & there exists a uniquely determined
point x = x(y) € £ and the unique value of parameter s, such
that y = 7, (s). In particular the function « defined by

£ D yrss=ul), if y=7.0 (2.2)

is a local solution of the problem (2.1a) and {2.1¢). The choice
of the second possible orientation on X gives us another (with
the opposite sign) solution of the problem (2.1a), (2.1¢)

Our aim is to determine the conditions which must be
satisfied by the hypersurface 2 in order that the solution of
the problem (2.1a) and (2.1c) would be also the solution of
Eq. (2.1b). Therefore these conditions will characterize levels
of the solution of the system (2.1a), (2.1b). The method of
characteristics tells us how we can reconstruct the whole
family of levels starting from the given one. That according
to the remark from Sec. I gives us the general solution of the
problem (1.2).

Theorem 1: A solution of the problem (2.1a), (2. 1c) satis-
fies the equation (2.1b) iff a nonisotropic hypersurface £ has
all principal curvatures constant.

Proof: Let u:X C £ —R’ be a solution of the problem
(2.1a) and (2.1c). Denote f:= — V?u,X:=Vu, and

1
D: = — VX. Thus X is the tensor field of the type (0) and D

1
of the type (1) The condition (2.1a) means that

{X|X)= +1. From the definition we conclude
(X|Y)=V,u and DY = — V,X for an arbitrary vector
field Y. First we show that® V,,.X = 0. Indeed, because of the
symmetry of the Levi-Civita connection we have

VA X|Y) = Vy(X|X)
=(X|[X, Y]} =(X|Vx Y=V, X).

Thus, using V(X |X)=2(X|V,X)=0 and the Leibniz
rule we obtain that (V, X |¥) =0 for arbitrary ¥, hence
VxX = 0. Using this result we can calculate

(VxD)-Y
=VyDY)=D(VyY)= —Vy(V, X)+ Vy X
= —R(X, Y)'X_VY(VXX)_V[X,Y]X+VVXYX
= —R(X,Y)- X+Vy X
= —R(X,Y). X+ D (DY),

which means that V,D=D?— R (X, )X. We have as-
sumed that the curvature vanishes so the last formula gives
simply V4D = D> So by successive covariant differentia-
tions of the equality /= tr{D } we obtain

(Vo) f=ktte(D*+Y), k0. (2.3)

We shall see that there exists the polynomial of n-varia-
bles o,...,0, (with constant coefficients) We R[a,,...,0, ]
such that for
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g =tr(D*), k>0, (2.4)
we have
0, =Wloy...0,) (2.5)

Let A4,,...,A,, denote eigenvalues of D (which are—in
general—complex functions on &); then

O =A%+ o+ A% 2.6)

On the other hand, coefficients 7, of the characteristic
polynomial

AT =T A" e (= 1P, = (A= Ayeld = 4,)
of the tensor D are expressed as symmetric polynomials of
variables 4 ,,...,4:

ne 3 A
i <<y

Using (2.6) and (2.7) we obtain the following simple expres-
sion:

(2.7)

o, 1 0 - 0
1 02 0'1 2 hdd 0
gl . k>0,
TR ooy Oky oy o k—1 >
T Oy O = 0O
(2.8)

Since 7, , , =0, then for k = n + 1 the expansion of this
determinant with respect to the first column gives us an
expression of the form (2.5).

It follows from (2.3)~(2.5) that the function f = — V?u
satisfies the following PDE of nth order:

l(VX)"f= W(f,vxf,..., 1 '(v,,)"—‘ f). (2.9)

nt (n—1)
Note that the earlier investigated curves ¥, ( x € 3 ) are inte-
gral trajectories of the fields X. So

Vaf (v (s) = %f (Ve e (V)" (¥ (5))

d n
o),

From Eq. (2.9) we obtain an ODE of the nth order for
the function s—/f (¥, (s)); thus fon some neighborhood of X is
uniquely determined by the values f,Vf,...,(Vx)" ~'f on
the hypersurface 2.

Since Eq. (2.9} has constant coefficients and [according
to (2.2)] u(y, (s)) = s, one can express fas a function of » if and
only if the functions f|5, Vyf|s,...,(Vx}" ~'f|s are con-
stant. This is exactly the case when f'satisfies (2.1b). By virtue
of (2.3), (2.4), and (2.8) the last condition is equivalent to the
fact that 7,,...,7, are constant on the hypersurface 3.

To finish the proof we show that 7,=0 and that
Tise-Ty _ 1 @re curvatures (i.e., principal invariants of the
second fundamental tensor H >*°) of the hypersurface 3. Let
us consider the tensor D|;. Because D= — VX and
n: =X [y is the field of unit normal vectors on 3 then
D -v=H . vforeach vector vtangent to 3. Inturn V, X = 0
implies D - n = VX |5 = 0. Thus one of the eigenvalues of
the tensor D vanishes (say A, = 0) while remaining ones
(namely 4,,...,4,, where m: =n — 1) are eigenvalues of the
second fundamental tensor of X (i.e., its principal curva-
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tures). So7, =4,...4, =0andr,,...,7,, are curvatures of the
hypersurface 2 /(r,/m)=(1/m)A, + -+ 4,,) and
T = A4, are known as mean and Gaussian curvatures.

Q.E.D.

lll. POLYNOMIAL SOLUTIONS OF THE SYSTEM
(Vulwvu) = alu), v2u = B(u)

We shall now find all solutions #:& R of the system
(1.2) of the special form

u( x) = §( Px|x) + (g]x) + uo, (3.1)
where P=P*cL(%, &) is a symmetric [with respect to
(+]-)] endomorphism, g € & and u, € R'. The importance
of such solutions follows from the fact (proved in the next
section) that each nonisotropic solution of (1.2) is of the form
v = 4 (1), where # is a polynomial solution (of degree <2).

First we prove the following auxiliary.

Lemmal: If E,, F are vector spaces and P, Qe L(E|, F)
then the following conditions are equivalent.

(a)Px A Ox =0forany x € E,.

(b} Pand Qare proportional (i.e., P=A4 -QorQ=A4.P)
or Im P =Im Q and Im P is a one-dimensional subspace of
F.

Proof: Obviously (b) implies (a). Conversely, assume
that (a) holds. We may assume that P 0. Choose comple-
mentary subspaces E’, F' for K: = ker Pand I: = Im P, re-
spectively; thus £, = E’' & K, F=1 @ F’, and P is of the
form

Pl o k)=P'e¢ o 0,
where P' € L (E', I') is an isomorphism. Puttingx =¢' & 0
and x =0 @ k in (a) we see that Q must be of the form

Qe o k)=(AP'e + Qik) & Ok,

where Q, € LK, I), Q, € LK, F'),and A e R".

Now the condition (a) means that

0,k=0 and P'¢ A (AP'¢ +Q,k)=0,
foranye'€ E'and k€ K. Thus @, =0andi A Q,k =0, for
anyieland k e K. If dim I> 1 (orif Q, = 0), the last condi-
tion implies Q, = O (that is @ = AP). Otherwise dim I =1
and Im @, = I. That means that ImP=Im @ =1.

If Iis a linear subspace of & we denote by I* its orthogo-
nal [with respect to ( - | - )] complement; [ is called isotropic
(respectively, nonsingular) iff I C I' (respectively,
InI* ={0}, ie, IT® I=%) It follows from Witt’s
Theorem® that if (( + f°, ( — )" ~7) is the signature of { - | - )
then the maximal dimension of isotropic subspaces is
min( p, n — p).

Theorem 2: The polynomial « of degree <2 is a solution
of the system (1.2) iff u is (possibly after a transformation
u—au + b, a#£0) of one of the two following forms.

1 r
= S elexP + (gl
i=1
where (e,,...,€, ), 0<r<min( p, n — p), is a basis of an isotropic
subspace I C &, geI*,and ¢; € {1, — 1}, equivalently
(3.2b)

i) u(x)= (3.2a)

(e:le;) =0, (e;]g) =0 for i, j=1,...r.

i) ulx)=— 3 alebs+af, (3.3)

i=1
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where (e,,...,¢,), 1<r<n, is an orthornormal basis of a non-
singular subspace I C &, gel, and €, =(e;le;)e {1, — 1};
ie.,

(e;]e;) = €6,

for i,j=1,..,r, g= Z (e:|g)e;- (3.3b)

i=1
Proof: If u is of the form (3.2a) or (3.3a) then simple
calculation [using (3.2b) and (3.3b)] gives, respectively,
Vu(x) = Z €le;|xle; +q, (Vu|Vu)(x)=(qlq),

i=1

V2u(x) =0, (3.2¢)
and .

Vu(x) = E €le:[x + qle;,

(Vul V) x) = 3 eler|x + P,

Vu(x)=r. (3.3¢)

Thus if 4 is of the form (3.2a), it is a solution of the system
(1.2) with

alu) = (¢|g) and B (u) =0, (3.2d)

while if u is of the form (3.3a), it is a solution of the system
(1.2) with

alu)=2u and Bu)=r. (3.3d)

We shall now prove the other part of Theorem 2. Note
that (3.1) implies V?u = tr T. Thus the second equation of
(1.2) is automatically satisfied [with £ (1) = const], while the
first one gives us P(Px+g) A (Px+¢q)=0 {since
(Vu( x) = Px + q and V{Vu|Vu)( x) = 2P( Px + g)).

Decomposing the left-hand side with respect to the
powers of x we obtain the following equations which must
hold for any x:

P A Px=0, (3.4a)
Px Ng+Tqg A Tx=0, (3.4b)
Tqg A q=0. (3.4¢)
Since (3.4a) holds, we see with the help of Lemma 1 that
the condition (b) is valid for P, Q: = P?and E;: = :F: = &.

But if /: =1Im P is one dimensional then automatically
P?=AP for some A € R'. Finally, (3.4a) is equivalent to
P2=AP AR\

Now we consider two possible cases.

(i) f A=0 then I=ImP C ker P=(Im P*' =TI
and, therefore I is an isotropic subspace. Equation (3.4¢)
means that g is an eigenvector of P with the eigenvalue A.
Thus Pg = 0,i.e., g € I'. Since (3.4b) also holds, it remains to
describe the form of the operator P. Let us choose a basis
(e1s..,e,)in I. Then Px = Z]_ (P, |x)e;, where the P; are vec-
tors in &. But ker P =I*, which means that P, € (I')* =1
and the P; are linearly independent. Hence P, = 2/_ p,;¢;,
where |[p,; || is a nonsingular and symmetric matrix. The last
statement is a consequence of the symmetry of P. A change
of the basis (¢;) transforms the coefficients p,; as coefficients
of a bilinear form. Thus (¢;) may be chosen in such a way that
pi; =€06,,,€ = + 1.Then Px = X]_, €,(e;|x)e; and conse-
quently, (3.2a) and (3.2b) hold.
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(ii) If 4 #0 (and P #0) then we may multiply u by 1/4
and, consequently we may assume that A = 1. Thus P? = P,
i.e, P is an (orthogonal) projection. In particular,
& =ImPekerP=1@o I', ie, I is a nonsingular (#0)
subspace. Formula (3.4b) means that Px A (1 — P)g = Ofor
any x. Thus (1 — P)g € I and, since Im(1 — P) = I*, one has
(1 — P)g =0, that is, ¢ € I. Hence (3.4c) holds. Moreover

{P(x+q)l(x + q) = §( Px|x) + (¢|x) + }(qlq)
equals the right-hand side of (3.1) modulo and additive con-
stant. If we choose an orthonormal basis (e,,...,e,) of 1, this
expression is equal to {=]_,¢€;(e;|x + ¢)°>. This ends the
proof.

QE.D.

Remark: If & is an (m + 1)-dimensional vector space

with coordinates ( x°,...,.x™) and

(xly):=x%°~ ¥ x¥,

i=1
then Theorem 2 says that all polynomial solutions (of degree
<2) of (1.2) may be obtained from the list”™®

u(x)=x% u(x)=x°+x),

u(x)=x", u(x) =% 2’: x2 1<r<m, (3.5)

i=1
ulx) = {2 £ X 2 u(x) =5 3 ¥
i=1
0<r<m’
u(x)=§(x° + x')?
by applying an isometry (i.e., Poincaré’s transformation) to
x — es and linear (i.e., of the form u—au + b) transforma-

tions in the dependent variable u.
Example: Consider the system of PDE’s

Vi =0, (3.6a)
(V| V) = a(v), (3.6b)

where af - ) is a given function. According to (1.4) and (3.2d),
if we substitute v = ¢ (), where u is of the form (3.2a) [with

(glg)#0] into (3.5a) and (3.5b), we obtain the
ODE ¢ "(u) = 0. Thus
v==73u)=C-u+ v, (3.7)

and [since (1.3) holds] a(v) = C *(g|q) = const.
Similarly, ifuisasin(3.3a)then2u - ¢ "(¥) + r& '{u) = 0.
Therefore

v=§(u)=[C- lu|' =7 vy, r#£2 (3.8a)

C-In |u]| + v, v=2, (3.8b)
and thus, again using (1.3), we obtain

alp) = B lv—up|Hr—Vr=2 p£2 (3.9a)

y explkv), r=2, (3.9b)

where B, v, k are real constants; moreover
Bl=2(1—r/2p.c¥2-n,
l¥| =2C?exp(vy/C), k= —1/C.
Thus it may be observed that if the function a( - }5£0 is such
as in (3.8), then there exists a solution of (3.6) of one of the

above-mentioned forms. Moreover, this solution is unique
up to an isometric transformation in #.
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In the simplest case, when dim & = 2, it is easy to prove
that all the solutions may be obtained in this way. Indeed, if
(- |-)hasthesignature(+, + )then(3.6a) means thatvisa
real part of a holomorphic function fon &, where we identify
& with the complex plane C. It follows from the Cauchy-
Riemann equations that (Vv|Vv) = |[f’|*. Therefore (3.6b)
implies
0=d '[P A d(f+7)/2) =T — F*f")dz A dz.

If £'#0,f"/f'* is a real meromorphic function, i.e.,
[P = —(1/f) =:—2/CeR. Therefore f(z)
= Clog ((z — z,)*/2) + f, and, hence

(x —Xof + ¥ —yo)°

2
is of the form (3.8b), while u is of the form (3.3a) with r = 2.
Now a(v) = 2C? exp( — (v — v,)/C), i.e., a(v) is as in (3.9b).
Furthermore, if f” = 0 then fand, consequently, v are linear.
Thus v = C - u + v,, where u is of the form (3.2a) with» =0
[orv=C- |u|"? 4 v,, where uis asin (3.5a), with » = 1] and
a(v) = const.

The case of sin(- | -)=(+, —) may be treated in a
similar way by substituting v( x,y) =fi(x + ) + [ x —y)
instead of v = Re f. Our claim that the system (3.5) has solu-
tions only if a( - ) is of the form (3.9) and that in this case all its
nonisotropic solutions may be obtained in the above de-
scribed way [formulas (3.7) and (3.8)] remains true for & of
any dimensions. That will follow from Corollary 1 which we
introduce in the next section.

vx,y)=Ref(x+iy)=C-In

+ v

IV. HYPERSURFACE WITH CONSTANT PRINCIPAL
CURVATURES

The aim of this section is to prove the following
theorem.

Theorem 3: Let (%, (- | - )) be an #-dimensional vector
space with the nondegenerate scalar product (- | - ) and let
2 C & be such an m = (n — 1)-dimensional nonisotropic
hypersurface that all its principal curvatures A,,...,4,, are
constant. Then 2 may be described by an equation of one of
the following forms:

(i) u(x): =i Px|x)+ (g|x) = const,

where PeL(&, &) is symmetric, P? = 0, and g € ker P with
glg=+ 1

(ii) u(x): =3 P(x— xo)|(x — X)) = const,
where 0#P € L(#, &)is symmetric, P? = P (i.e., Pisan or-
thogonal projection), and x, € &.

It follows from consideration of Secs. II and III (and
may be easily checked by straightforward calculations) that
hypersurfaces given by equations of form (i) or (ii) have con-
stant curvatures; thus the converse theorem is also true.

Corollary 1: Each nonisotropic solution v of the system
PDE

(Vo|Vv) = alv), V=P8
has (at least locally) the form v = (1), where u is such as in
Theorem 2.

Proof: 1t follows from Sec. II that the level 3 : = {x/
v( x) = vy} of such solution has all its principal curvatures
constant. So 2 is such as in Theorem 3, say (for instance)
& = {x/u( x) = x,} is of the form (i). Let ¢ ( - ) be the solution
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of the problem ¢ "(u)=a{d (), &(uy)=v, Then
(V3 (u)| Ve (4) = (s (4)) and & (u)[5 = & (uo) = vo = v]5.
So ¥ (4) = u (in some neighborhood of 2') by virtue of the
uniqueness of the solution of the boundary problem for the
equation (Vv|Vv) = a(v). The case when X is of the form (ii)
may be treated in a similar way.

For simplicity we limit our considerations to the case
when ( - | - )is positive-definite. The case of an indefinite met-
ric is difficult because of the existence of symmetric tensors
that cannot be diagonalized (the Classification Theorem
about such tensors may be found in Ref. 9). For instance,
hypersurfaces 2 of the form (i) with P 0 have all principal
curvatures vanishing. On the other hand, the second funda-
mental tensor H of such a 3 is in any point x € 2 the restric-
tion of P to the subspace T, 2 and thus it is not a vanishing
nilpotent operator. It is a rather surprising fact that if in
addition rank P = 1, then such a quadratic 2 may be isomor-
phically mapped onto the hyperplane {g)*; such an isomor-
phism is given by I 3 x—x —€-(g|x)lg + iPx) € (¢)*
(where € : = {g|g) = + 1), which may be easily checked by
virtue of the identity ( Px|x)( Py|y) = ( Px|y)*.

Let S be an immersed submanifold of dimension /in &
and let € > 0. Denote for s € S,

3 :={xec&/x—se(T,S), |x—s|=¢€},

s (4.1)
the (m — /}-dimensional sphere with center s laying in the

hyperplane perpendicular to T,S. Let us define

=2, 7255 7|5 :=s

seS§
If € and S are “sufficiently small” (namely, so that the below
described endomorphism I, of T, ,,S is invertible for any
x X, s €S)then Y is an immersed hypersurface, 7 is a sub-
mersion, and the triple (77, 2, S) is a fibered bundle with an
(m — I)-sphere as a typical fiber. So constructed, 2 will be
called the e-tube around the submanifold S.

Lemma 2: Let  C & be a hypersurface having con-
stant principal curvature A 0 with multiplicity k>1 [i.e.,
V:=ker(H — A1) is an k-dimensional distribution on 2'].
Define a mapping

7: 3-8, w(x):=x+(1/4)n(x), (4.3)

where n is the normal unit vector on 2, and let
S:=mZT) C &. Then S is an immersed submanifold of di-
mension / : = m — k and X is an open subset of the e-tube
around S(withe:=1/[4|).

Proof: It follows from the definition of the second fun-
damental tensor™ H that the differential of =7 is
dm{x).-6x=6x—(1/A) H, -8, ie,dm{x)=1—(1/A)H,.
Thus ker d7r( x) = V, is the k-dimensional subspace of ei-
genvectors of H, corresponding to eigenvalue A. Therefore
we see from the Rank theorem">’ that S is an immersed
submanifold of dimension / = m — k and the fibers of 7 are
k-dimensional submanifolds on 2.

Using the symmetry of S for s = ( x) we obtain

7.8 = Im(1 — (1/A)H,)
= T, 36ker(1 — (1/A)H,) = T, Z6V,;
thus n( x) € (T,S)* and, sincex —s = — (1/4 )n( x),
x—se(T,S),

(4.2)

Ix —s| =€, for xem'(s), (4.4)
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that is, 7~ '(s) C %, in accordance with (4.1). It proves that
is contained in the e-tube around .S and (because of equality
of dimensions) it is its open subset.
Q.ED.

Lemma 3: Let X be an e-tube around an /-dimensional
submanifold SC & . Thus 3 has all principal curvatures con-
stant iff § is flat (i.e., it is an open subset of an /-dimensional
plane in &).

Proof: Denote by 57 the second fundamental tensor of
S. It means that for s € S, 7%, is a bilinear map

AT S XT.S—T.S, (r, 55\ >3 (r, 55),
which may be defined by
Hoqyy (M), 3(t) 1 = —#He)T, (4.5)

where s(¢) is a curve on S, r{t) €(T,,, S)*, and the symbol
(+)7 denotes the tangent to .S component of the vector.'®
Now we express the second fundamental tensor H of
the hypersurface 3 by the tensor #°. Because 3 has (induced
from &) Riemannian structure, then for x €3, C 3 we have

T 3={nx)'=T.2aT 3, (4.6)
where n(x):= — A{x — #(x)) is the normal unit vector

withA = + 1/¢(the + sign corresponds to internal and the
— sign to external orientation of X ). The subspaces

T:3:.=T,3 =(T.S,x—s)', T, 3:=T.S

are the vertical and horizontal components of 7 2.
Letusdenoteby !, :T,.S—T -3 = T,S the operator of
horizontal lifting,>” i.e.,
I, : = (dm{x]|

Now we determine the explicit form of 7, .

It is well known that any curve s(f ) in S may be lifted toa
horizontal curve in 2, i.e., such that x(¢) e T ;;, 2. Putting
x(t)=s(t) + rit) we have rt)€(T,,S)", whereas [since
$(t)eT,,,§ =T ;2] the horizontality condition means
that Ht) €T, S. Thus H¢) = Hz)” and (4.5) gives

x(t) =3(t) + Ht) = 5(t) — H g ( x(£) — s(t), (). (4.8)
It is the ODE on the horizontal lifting or curves in S. Since
s(t) was an arbitrary curve, it follows from (4.8) that the hori-
zontal lifting of vector & is the vector

6, =1..6,=6,—,(x—s38,)

4.7)

—1
T;z) :

Thus
I =1-5F(x—s,)=:1—-J,. (4.9)
Now, from the definition of H, we have
H, , x(t)= —A(t), where n(t)= — A (x(¢)—s(t)). Thus,

consideration of the vertical curves [i.e., such that
s(t) = const] and horizontal ones [i.e., such that (4.8) holds]
by virtue of (4.8) gives
A-6,,
A-J3.6,,
So, since (4.6) and (4.9), H,, has the eigenvalue A with multi-
plicity k=m — ! and its remaining eigenvalues are
— A (x)/(1 —j, ( x)), wherej, ( x), (@ = 1,...,] ) areeigenval-
ues of the tensor J, = (x — s, - ).

Thus, because 57, linearly depends on x — s € (7, S)",
the eigenvalues of H are constant iff ##°=0. The last condi-

if 8, e T'X is vertical,

H, -5, = [ if 8, =18, is horizontal.
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tion, in turn, implies that Sis flat (since the tangent space 7§
is constant for s €%’).
Q.E.D.
Proof of Theorem 3: If all principal curvatures of 2 van-
ish, then J is flat, i.e., it satisfies an equation of the form
(¢]( x — xo)) = O. This is the case (i) of our theorem. Other-
wise, there exists nonzero curvature A and it follows from
Lemma 2 that 3 is an open subset of the e-tube (€ = 1/4)
around the submanifold § = 7{2'). Lemma 3 in turn says that
S must be flat, i.e, it satisfies an equation of the form
P(x — x,) =0, where P is an orthogonal projection. Thus
the e-tube around S is given by ( P{x — x,)|( x — x,)) = €%,
which gives us the case (ii) of the Theorem.
QE.D.

V.ISOTROPIC SOLUTIONS OF NONLINEAR WAVE
EQUATION

In this section we shall study isotropic [i.e., those that
satisfy the Hamilton—Jacobi equation for massless particles
(Vu|Vu) = 0] solutions of the nonlinear wave equation (1.1).
It follows from the theorem below that (1.1) possesses iso-
tropic solutions only for the very special case when
& (u, 0)=0.

Theorem 4: Let & be a n = (m + 1)-dimensional Min-
kowski space with the metric (- | - ) of the signature (1, m).
Then for the function u (of the class C3) defined in some
neighborhood of 0 € & the following conditions are equiva-
lent.

(a) u satisfies the equations

(Vu|Vu) =0, V?u=0.

{b) u is a solution of the system

(5.1)

(Vu|Vu) =0, Vu=_pu) (5.2)
for a certain function S.

(c) u satisfies the equations

(Vu|Vu) =0, (V(V*u)|Vu)=0. (5.3)

(d} x»—u( x) may be defined in the implicit form by the
equation

F((w(u)|x)) = u, (5.4)

where F ( - ) is a real function of one variable and u—w(u) €&
is a one-parameter family of nonzero isotropic vectors.

Proof: Obviously (a) = (b) and, since
(VB ()| Vu) = B'(1)(Vu|Vu), (b) => (c). Further, differentiat-
ing (5.4) we have

F'((w]x)) - (w'[x)Vu + w) = Vu,
F((w]x)) - ((w'|x)Vu + w|(w'|x)Vu + w)
+ F'((w|x)(w'|x)(Vee|Vu)
+ 2(w'|Vu) + (w'|x)V?u) = V2u.

Thus
_ Fwxw
1 — F'{(w]x)) - (w'[x)
is isotropic and, because (w(u)|w(u))=0 implies

(w'(z)|lw(u)) = 0, V?u = 0. Therefore (d) = {a) and it remains
to prove that (c)=> (d).

Let (x° x',....x™) denote Cartesian coordinates in &
such that (x|y) = x*y, = xgy, — x,»,;. Here and in the se-
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quel we shall use the Einstein convention, that is, repeated

indices denote summation over their range
(Agsv,y...€10,....,m} and ijk,...,e{1,..m}).
We use also standard notation
du du 0
H:=§, u#v:=ax#axv, U’ = uy,
u'i= —u;, uy:= —u,,etc.

Let us assume that u satisfies condition (c). Differentiat-
ing the isotropy condition «*u, = 0, we have

(5.5)

Thus the second equation of the system (5.3), that is,
u*u;*, = 0, may be rewritten in the form

A A A
wuy,, =0, wuy,, +u'u;, =0.

w' ut; = 0. (5.6)
If u = const then (5.4) holds with F = const. Therefore we

may assume that Vus£0, i.e., uy = + /u,u; 0. Then from
(5.5) we obtain the following formulas:

uo, = (1uoluju;, g = (1/(uo)fu; ;u,u;, (5.7)
50 (5.6) may be expressed as
0 = (ugo)® — 2uq;the; + U Uy,
= (unn) — 2ugu, nn, + uu;, (5.8)
where n, : = u,/u,. Now we shall show that (5.8) describes

the fact that all the levels of the function u are hyperplanes in
# . For this purpose observe that for p € R' and

Vi t=u;n; —pn, (5.9)

we have the following identity:

(u;; — vl — 7’,‘731')2
1

= 4P2 - 4(uijninj)p

itz

i

+ (lu nn)? — 2upu, nn, + u,u,).

By (5.8) it reduces to

S (wy; —viny — yn 2 = (2p — umn)

Li=1
which]means that

U =y:n +vn; (5-10)
for y; given by (5.9) with p = lu, n,n;. Thus, using (5.7) we
obtain

u,, =B,u, +B,u,, (5.11)

where B, : = (1/2ug)u; ;n,n; and B, : = y,/u,. Now observe
that if X is a vector field on & tangent to the levels of « (i.e.,
such that u, X* = 0) then (5.11) gives

Vyu, =u, X"= (BVX”)uM.
Hence the gradient Vu has constant direction on each level of
u (atleast in the local sense). Thus Vu = @ - w(u) for a certain
function ¢=£0 and some one-parameter family of isotropic
vectors w(u) € & . Therefore

Viw(u)lx) = [(w'(u)|x) + 1/@ 1Vu,
and thus the function ¥ may be expressed as a function on
(w(u)}x), i.e., u = F ((w(u)|x)) for a certain function F (- )

Q.E.D.
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Remark 1: The rather surprising fact that (b) implies (a)
simply means that # =0 s the compatibility condition for the
system (5.2).

Remark 2: In the more general case of an arbitrary sig-
nature of - | - ) let us assume that, foru € R', (w'(u),...,w" (1))
form the basis of an isotropic subspace I(u)C # and let
F(....,-) be a real function of r variables. Then it is easy to
check that the function x—u( x), defined in implicit form by
the equation

F((w'(w)|x),....(w" (u)|x)) = u, (5.12)
satisfies the system (5.1).

Our conjecture is that in such a way may be obtained a
certain class of solutions of the system (5.1).

Remark 3: The characteristic peculiarity of functions u
which may be described in the form (5.12) is that each their
level u(x)=u, is the cylinder F({w|x),....(wq|x)) = uq
[where w) = wu,)], profiled by the level of F and with
(wp,....wy )" as the generating subspace.

For the simplest case » = 1, (5.12) reduces to (5.4) and
the cylinders become the hyperplanes.

In the theory of quasilinear PDE’s solutions of the form
(5.4) are known as Riemann waves whereas (5.14) defines the
so-called nonplanar simple waves, cf. Refs. 11-13.

VI. EXAMPLES OF APPLICATION TO THE EQUATIONS

OF MATHEMATICAL PHYSICS
Let us consider a particular form of Eq. (1.1), namely
Vi =f(v). (6.1)

Such equations can be found, for example, in the description
of Josephson phenomenon in the Euclidean field theory, in
the theory of elementary particles, in nonlinear electrody-
namics, in magnetohydrodynamics, and in gasdynamics.

Substituting v = ¢ (), where u is of the form (3.2), or
(3.3a) leads to the following ODE:

d*
" =f(2), (6.2a)
or
d¥  do
2u " +T_f(19) (6.2b)

respectively [the coefficient (g|g)#0 may be omitted in Eq.
(6.2a) by including it in f]. If we exchange variable s = V2u
for u>0ors =+ — 2u for u <0 we can reduce Eq. (6.2b) to
the Emden-type equations'*"

d*¥ r—1 dz?
o
ds* + s ds =)

Note that if » = 1, then the above substitution transforms
(6.3) to the form (6.2a). The ODE’s (6.3) with r>2 were inves-
tigated in papers'®!” for some class of functions /. In particu-
lar when r = 3, in the literature'”'® one can find existence
theorems for solutions of (6.3) with properties d (0)/ds =0
and limg_,_ & (s} = O for their right-hand sides of the polyno-
mial exponential and trigonometrical type

fId)=23" f(F)=pd+A8> f(F)=expd,
f(#)= +sind, f(@)= + cosd,

€= +1. (6.3)
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fi#)= +sinhd, f(&)= + coshd.

For some solutions their Taylor expansions were found
and other ones are given in the tables.'®

It is worth noting,'® that all the second-order ODE’s

2

d*d (dz? 3, u)

d \du
(where F is rational in ¢ and in di4 /du and analytic in u)
without movable critical points are reduced [by some homo-
graphic transformation < = (/ {s)w + m(s))/( plsjw + g(s))
and exchanging the variables u = ¢ (s)] either to Riccati
equations or to elliptic functions or one of the following six
types of Painlevé transcendents®’:

2
P,.d 19—619 + u,
du®

P,: ‘2;’29=2193+m9+a,
B dff? 0(?3) %Zﬁ PARTIREZA 5
Py ‘2;'9 20(31:) + 3’;3 +4u192+2(u2—a)19+§,
d* [ 1
B e {20 +ai 1]<dﬁ) _%‘?‘Z‘
T

d29 1[1 1 1 }(d&)z
P =—1—
* du? 9 o1 7 _ul\au

NI 1 \do 9@ —19—u
[u+u—1+0—u]du+ wiu— 17
Bu | ylu—-1)  oufu—1)

X[a+&2+(0—1)2 (0—u)2]'

In some cases this fact is very helpful when looking for the
solutions of Egs. (6.2a) and (6.3) in a closed form. Now we
shall give the solutions of Eq. (6.1) for a few special forms of /.

A. The polynomial d’Alembert equation
Let

f(3) = 448> + 3B32 +2C% + D, AB,CD,eR".
(6.4)

From Eq. (6.2a) we have

187 =49*+B3*+C3*+ DI+ E, EcR', (6.5
where E is the constant of integrability. Now we present the
procedure of construction of the general solution of this

equation. It can be expressed by the Weierstrass P-func-
tion?%?! satisfying the equation

P?=4pP% _g,P—g,. (6.6)
The so-called invariants g, and g, are homogeneous func-

tions of the periods w,, @, of the — 4th- and — 6th-order,
respectively, and are given by the formulas

1
8@y, @y} = 60 —,
2\ 2 E (mw‘ + m wz) (67}
w,, »,) = 140 _—
gsloy, @) mzm (ma, + m (02)6
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In our case the values of the invariants g, and g, are given by

8w, wy) = a4 — 4a,a; + 3a; =4, (6.8)

1 a a,
== :p,
glw, wy)=det|a; a, a

a, a; a,

where

g =B 4. =S a.=p |4 4 .=4E
2./24 3 2

The existence of periods @, and w, guarantees the fol-
lowing fact.?! For every real number ¢, the equationJ (1) = ¢
[where J(7) =g} /(g3 — 27g3) is the module function of
T:= w,/,)] possesses exactly one root in the fundamental
region of the modular group. Thus, taking c:= g%/
(g® — 27p?) we can obtain the ratio 7 = w,/w,. If g, = ¢#0
then from the homogenity of the function g, we can deter-
mine

1

: 32(1’ T)’
and, when g, = ¢ = 0 we have

4 _ _—
W, =4

o =p~ ' g{l, 7).
When w, is found, then w, is determined from the formula
0, =7 ' w,, and @, and w, calculated in such a way satisfy
(6.8). It is well known that one can uniquely determine a
quantity ¢ satisfying the system

P(t, oy, w2) = a% — ay
P'\t, @, w,) = 2a; + a; — 3a,a,.

For such ¢ the solution of Eq. (6.5) can be written in the
following form?%:

& (u) = (24) " ’glu, 1),
where the function g is given by formula
glu, 1) = 1 Plu+1/2, 0,0,)+Pu—1t/2 0,0)

’ 2 Plu+t/2,0,0,)—Plu—t/2, 0, v,
—a,.

It may happen that one of the periods (say w,) becomes
infinite, @, = oo} it takes place when g3 — 27g3 = 0. In this
case we can express the solution by trigonometric functions,
using the formula

(6.9)

1
sin27 - w/w,)

2

Plu, 0, )= — l(—”—)

3\w,;
where

o, = 7(28,/%)"*.

By specification of the right-hand side of Eq. (6.4) we get
particular equations appearing in various branches of math-
ematical physics. For many special cases we can find explicit
solutions in a closed form. For example, let us consider the
equations of motion for the massive SU(2) Yang-Mills the-
ory

G, =e€yGL W +1*W,
where

Gi, =0, Wi —3,W; +e€e, . W,W:.
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By the so-called t'Hooft—Coorigan—Fairlie-Wilczek ansatz
a n 0
eWe = l.c'lv/ax L eWi—c, dv/dx +is, dv/dx ’
v v

the potential W', may be reduced to a potential satisfying the
scalar @ *-theory equation®

Ov—Jp?v+Ar*=0, pu,AeR.

(6.10)

In our case the ordinary equation (6.5) can be reduced by a
particular choice of constants 4 = — A /4, C=pu?/4,
B = D =0 to the elliptic equation which may be solved us-
ing the Jacobi function.?*?? So we obtain®***

Fu) =1, - sn(du + E,, k),
F(u) =179, - cnd,u + E,, k,),
Fu) =7, - dn(du + E;, k3),
where the Jacobi parameters k; are given by
— ,119(2) _ ’uz y

(6.11)

k3= 7 i
1 ZA% 1 2 ) 4]
A} 2
ki=" A= L +ad)
2
K=k a1=2h

In this particular case the solutions can be interpreted as
“periodic waves” (periodic potential).

Let us consider a particular d’Alembert equation of the
form

Ov=pv 4+
that is, f(#) = ud + 9" In our case the ODE (6.2a) can be
reduced to the elliptic equation
d'= +{[2/(n+1)]I" ' +ud*+E}'?, EcR.

For example when n = 2 the solution of this equation can be
expressed by the Weierstrass P-function satisfying Eq. (6.6).
In this case the invariants g, and g, are given by

2 _ #)3 E
-— Dy, )= —|—] +—.
2 8w, @) (6 36

If the periods w,, @, are obtained then the solution of the
ODE (6.2a) takes the form

F=6Pu, 0, v, —u/2.

Let us consider the second situation when the function
(6.4) is inserted into Eq. (6.3). If 4, B, C, D satisfy the condi-
tion

82wy, @) =

B>  B(44).(84C — 3B?)
(44 )? 44 ’
then the substitution & = (y — B (44 )~%3)/°/4 . B gives
Y'(s)+ ((r — 1)/5) '(s) £ 2(up(s) + Apis)’) = 0,
where s := (44)238AC —3B?), A:= (44)3. Tt is
known'® that if » = 3 then the above equation has a unique

solution y = y(s) which is of class C? on (0, «) and satisfies
the conditions

lim y(s) = const >0, limy'(s)=0, lim y(s)=0.
s—0 s—0 S— o0
Letf(#)=pud + A9, whereu <0, 4 <0. If r = 3 then

the solution of the ODE (6.3) obtained by the Kurdgelaidze
techniques takes the form®*
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3= (A /B)"4s0) = V2(s/50)"*Z {wls/50)},
where Z (w) is a solution of the equation

Z2 +aZ*+(B/3)Z°=C,
and

w(s/s0) = (A /B8)"* In (s/5,)

where C|, s,, @ and 3 are real constants. In general Z (w) can
be expressed by elliptic functions.?® In particular case when
C, = 0 the solution takes the form (Schonster~Emden ')

& = (3/50)'/4(1 + (s/50)) 1%

Let us consider the special situation when the function
f(?) = Ad" isinserted into Eq. (6.3). If r = 2(n 4+ 2)/(n + 1)
then the solution of the ODE (6.3) obtained by Kurdgelaidze
techniques takes the form

&s) = (BCT/A )"+ s/s0) =" ' Z [w(s)],

s, C; € RY, (6.12)
where Z (o) is a solution of the Emden—Fauler equation
dzZ
724 B i, 7z, =% ,BeR
n+1 g do »b
(6.13)

and

2/n+3 /S0 ~(r— 1)/ (n+1)
ot=Clze)  w] () 4(3)
BC 1 \5§, So

If C, = 0 then we can find a special class of solutions of Eq.
(6.13). Hence we have

0(5,) _ (BC%)I/n+3(i)—2/n+l(Hz(n + 1) )l/nfl
A So (n—1)7
2/n+3 /50 —n—1/n+1)
leGa) e
Cl 1 So
2/1—n
xd(i)] :
So

In the particular case for /() = A& %, where A <Oand r = 4,
the ODE (6.3) may be solved using a Jacobi function, so we
obtain®*

2 1/2
Ty S N
A2k —1)\s V2kT—1 S
where s, 1s an arbitrary constant and k is the Jacobi param-
eter. If§ < k 2 < 1 then the solution describes periodic oscilla-
tion with vanishing amplitude. When k2= 1 the periodic

oscillations transform into hyperbolic oscillations. Hence we

obtain
s [2__ls/s)
As2 1+ (s/50)

B. The Liouville equation

The Liouville equation we obtain taking, in (6.1),
f(#) = uexp(@). In the two-dimensional case, n =2, the
general solution of (6.1) is well known?®:

ds)=
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A A

el [f(x+1t)—glx—1)]?

(f and g are arbitrary functions of one variable). It may be
simply obtained using our method. For many dimensions
our procedure gives for the solution of Eq. (6.2a) the follow-
ing expression:

& (u)=In( P+ /2, v, 0,) — (1/3u)D), DeR',
(6.14)

where P is the P-Weierstrass function with the invariants g,
and g, given in the form

&lwy, wy) =4D?/3u?,  gyw,, @) = 8D3/27u>. (6.15)

Some people?’ think that in quantum field theory parti-
cles are described as the singular solutions of the Liouville
equation. The solution (6.14) with « as in (3.2a) describes the
movement of a single particle in the Euclidean quantum field
theory.

Another application of the Liouville equation is in plas-
ma physics. Let us consider electrical potential v created by
particle distribution (ions, electrons, etc., with charge Z,, e
the elementary charge, Z a nonzero, integer number) at abso-
lute temperature 7. Let the concentration of charged parti-
cles be n,. Then we have the following equation®® for poten-
tial v,:

Ay, = — 4meng exp( — Zev,/kT).

By substituting v = — Zev,/kT we obtain the right-hand
side of the form f(v) = u exp v, where u = 4me’no/kT. The
obtained solution (6.14), where u is given by (3.2a), describes
self-consistent potential created by charged particles at tem-
perature T. This potential always has a singular point, given
by the equation

P+ (Nu/2u, »,, @,) — (1/3u) D= 0.
Therefore we can consider this solution as a logarithmic po-
tential created by an effective point charge located at a singu-
lar point.
In turn, substituting £ (¢ ) = u exp in Eq. (6.2b) gives
2ud” +rd' =pexpd.
By substituting ¢ = In ¥, it can be reduced to

Y. rg Fyr_g
v 2 s
where ¥ : = d¥ /ds,s = u/2.
For r = 2 the above equation becomes®® the third equa-
tion of the Painlevé P, type for an unknown function ¥.

v_

C. The sine-Gordon equation

Let us consider now the sine—~Gordon equation [ie.,
f(¥)=sind].

We start with Eq. (6.2a). Substituting ¢ = 4 arctan ¥
for the sine~Gordon equation gives
D-—1 D+3

4

where D is the constant of integrability. This ODE is of the
form (6.5) and the method described in Sec. VI A may be
used, giving for ¥ the same expressions as in (6.9) for .

g2 = v+ W2+D;1, DeR/,
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In turn, Eq. (6.2b), after the substitution # = — iln ¥
for the sine—-Gordon equation gives
y? r 1 1
+—¥ - — Py =0
' 2u 4u 4u
The condition of reality ¢ requires that |¥ | = 1. For r =2,
Eq. (6.16) becomes the third equation of the Painlevé P, type.
There is also another possible way. Namely inserting
& = eW? with e = + 1 into equation (6.2b) we obtain
¢=(L+ 1 )(I/z_r-l vy 8Y(l — V)
2 14+ ¥ s 1+ ¥

ife=1, and
- 1 1 )-2 r—1. 8¥(l+Ww)
= —(—— 2 2

(2&1/ 11—y s v—1
ife = — 1, where ¥ : = d¥ /ds, s = |u|'/. This equation is
of the Painlevé Pg type.”®

WII_

(6.16)

D. The cosh- and sinh—d’Alembert equations

Let us consider the d’Alembert equation (6.1) with the
right-hand side of the hyperbolic type:

(@) f(#)=coshd and (b) f(F)=sinh .
By substituting ¢ = 4 arctanh ¥ the ODE (6.2a) leads to the
equation

W= W(l+ ¥ +(C/8)1 — W
for the case (a), and

P2=924+(C+1/8)(1 — P2

for the case (b), where C is the integral constant. Both these
equations are of the considered form (6.5). If in particular
C = 0 then we obtain the following solutions:

¢(u)=In (4P(u w,, w,) —3D), DeR’, (6.17)
where P is the P-Weierstrass function with the invariants g,
and g, given, respectively, by the formulas
golo,, 0,) = 14D 4+ 1), gsw, @)= —D(D /27 + 4
where the upper sign refers to the case (a) and the lower to the
case (b).

In turn Eq. (6.2b), after substituting ¢ = In ¥, gives

468 r 1 1
+—V¥-—— i =0,

'4 2u 4u * 4u

where the upper and the lower signs refer to the case {a) and

(b), respectively. This is a Painlevé P, type equation.

W'I_
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We examine the singularity structure of the equations of motion associated to integrable two-
dimensional Hamiltonians with second integrals of order higher than 2. We show in these specific
examples that the integrability is associated to a singularity expansion of the “weak-Painlevé”
type. New cases of integrability are discovered, with still higher-order integrals which are

explicitly computed.

PACS numbers: 03.20. + i, 02.30. + g

I. INTRODUCTION

The singularity analysis is a most useful tool in the
study of nonlinear dynamical systems. The interest in this
method has been kindled by the conjecture of Ablowitz, Ra-
mani, and Segur (ARS)" who related integrability to the sin-
gularity structure through the Painlevé property. The latter
is associated to the absence of critical movable singularities
on the complex time plane, i.e., the singularities of the solu-
tions are simply poles. The power of the ARS conjecture has
been amply demonstrated by various works where it was
shown that well-known integrable systems pass the Painlevé
test. However, and what is more important, this approach
has made possible the identification of new classes of integra-
ble systems.?

In a recent work we have examined the possibility of
integrability existing independently of the Painlevé proper-
ty. We thus discovered two-dimensional polynomial Hamil-
tonians which possess a second integral of motion, and
where the equations of motion were not of the Painlevé type.
However they possess movable singularities of particularly
simple algebraic-cut form (¢ — #,)'/". Such a behavior was
dubbed the “weak-Painlevé” property and has been ex-
tremely useful in producing 2-D integrable Hamiltonians.’

Once the “weakened” version of the Painlevé conjec-
ture was proposed, two important questions have been asked
by Kruskal and Fokas. Kruskal’s question was whether the
full-Painlevé property (pure pole behavior) could not be re-
covered from the weak Painlevé one with an adequate
change of variables. This question has been dealt with in
detail in a previous article.* We have shown that the two-
dimensional Hamiltonian systems exhibiting the weak-Pain-
levé behavior, and which are associated to constants of mo-
tion quadratic in the velocities, are separable in some sense.
The equations for the trajectory indeed separate when one
expresses them in the adequate coordinate system.> Our
analysis has shown that the equations of motion, even when
expressed in the coordinate system which lead to separation,
still are of “weak’ rather than the full-Painlevé type. Fokas’
remark at this point was that a genuine test of the weak-
Painlevé criterion would be offered by integrable Hamilto-
nians which are decidedly nonseparable. Therefore 2-D
Hamiltonians with a second integral of degree higher than 2
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in the velocities were investigated.

The aim of this paper is to examine, from the point of
view of the singularity structure, two Hamiltonians: one due
to Fokas himself® and one due to Holt,” for which cubic
integrals of motion are known. We will show that these
Hamiltonians lead indeed to expansions of the weak-Painle-
vé type for the solutions. In the case of the Holt Hamiltonian,
further cases of integrability are discovered. Their second
integrals are calculated. In the process of calculating these
integrals we investigate the possibility of modifying the po-
tential through additional terms while preserving integrabi-
lity. We derive thus the additive terms for the Holt potential
and for the Hénon—-Heiles one (which we have analyzed in a
previous work®).

Il. PAINLEVE ANALYSIS OF THE FOKAS-
LAGERSTROM HAMILTONIAN

In a recent paper,® Fokas and Lagerstrom proposed the
two-dimensional integrable Hamiltonian

H =%+ ) + (x* —y*) 7", (1)
for which the second integral is

1= (% = yP)xp — px) — 4 px + xp)® = y*) 772 (2)
The Hamiltonian assumes an even simpler expression in the

variables x + y.
We rewrite H, up to scalings, as

H=yX* 4 77 4 yxy)2"2. (3)

The equations of motion read

X:X-5/3y—2/3 Y=X42/3y—5/3' (4)
An obvious possible singular behavior is
X~Y~(t—1t)%

witha — 2= —Ja,ie,a=1

The leading behavior is not a pole. 4 priori, one could
expect either of two possibilities: the full-Painlevé situation,
where X ® and Y have a pure triple pole; or the weak-Painle-
vé case, where all powers of (t — #,)'/° appear in the expan-
sion.

In order to settle this question, we compute the reson-
ances. Wefind — 1, — {3, and % As usual, — 1is associat-
ed to the arbitrariness of ¢, and two free parameters enter at
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order 3 and §. We are thus in a weak-Painlevé situation.

Because of the presence of one negative resonance be-
sides — 1, this solution depends on three free parameters
instead of four, and is not generic. We must now look for the
generic singular solution. Up to the exchange of x and y, this
solution is obtained when Y has a divergent second deriva-
tive, but has a finite, nonzero limit 4 at the singularity.

The dominant part of the X equation is

¥ =423y —5/3’

giving the leading behavior X ~(¢ — #,)*’* and resonances
— land + ] (this is still a weak-Painlevé situation).

As for Y it behaves as

Y=A+B({t—1t)+Clt— 1P + -,
with 4 and B free. The (t — ,)*/? term in Y is such that its
second derivative balances the most divergent term (propor-
tional to X ~2/3) in the corresponding equation.

The four free parameters of this generic solution are #,,
A, B, and the coefficient of (¢ — #,)°’*in X [or, equivalently, of
(t — t,)* in Y] which is related to the energy.

In conclusion, both the obvious, nongeneric solution
and the (far from obvious) generic one have weak-Painlevé
type expansions. This would suffice in order to answer Fo-
kas’ question as to the existence of nonseparable potentials
with the weak-Painlevé property. However, further exam-
ples can be offered.

IIl. PAINLEVE ANALYSIS OF THE HOLT
HAMILTONIANS

In his analysis of integrable potentials in two dimen-
sions, Holt has constructed a Hamiltonian which possesses a
second integral cubic in the velocities.”® The form of this
Hamiltonian is

H =5 + %) — x*7 — (F — ™27, (5)

with 4 = 1 (we have introduced A for further use).
Its second integral, still for 4 = 1, reads

C =525 + 3px) — [ 2(y* — e~ — 3]
— 18xyx'/3, ©
The corresponding equations of motion are

~5/3 %yzx—sn’ y — 2yx—2/3' (7)
The Painlevé analysis in the case £ 0 is quite intricate.
In fact it resembles closely the analysis we presented for Fo-
kas’ Hamiltonian. That is, y has a divergent second deriva-
tive but a finite nonzero limit at the singularity.
Three cases can be distinguished (in which the param-
eter A does not play any role).

i) x~drt ym [ 4B (r=io),

where 4, B are determined by the most diverging term in the
equations of motion. The resonances in this case are — 1,
— 4%, — 4, — % So this is a one-parameter solution.

(i) x~dr® y~ /izfi +Br+Cr4,

where one free parameter, say B, determines 4 and C. We
look for the resonances through a term y7°/* * "in y. We find

i =Ax"? 4+ ux
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n = — § which means that #; is free, n = — ] (B is free) and
n= —}, —3, which are just formal resonances. This is a
two-parameter solution.

(iii)y x~Dr'% y~A+ Br+Cr2

with 4 and B free (Cand D fixed through Eq. 7). We look for
resonances through terms y7**+"inx and 72" "iny. We
find n = — 1 (dueto ), n = —3, — ] (associated to 4 and
B), and n =} which is a genuine resonance (related to the
energy). So the solution is the generic four-parameter one
and it is of the weak-Painlevé type.

We now turn to the caseu = 0, for which 4 will play an
essential role. In this case x diverges as x~7 while y can
diverge either as y~7> or as y~7" with rational 7.

In the first case ( y ~ 7°) the resonance condition leads to

6A =6+ mm+ 1), (8)

where m must be an integer. In the second case (y ~7") we
obtain

nin — 1)=12/4. 9)
The only rational solutions to systems (8), (9) are
A=1, m=0, n=4

A=2, m=2, n=3

A=6, m=135, n=2,

A=16, m=9, n=j}

A=27, m=12, n=j4

A=2%6 m=22, n=4%

Of these solutions A = 1 corresponds to the known Holt po-
tential; A = 2 is a formal solution of (8), (9) which does not
satisfy the Painlevé property. Indeed, the leading behavior is
not rational but logarithmic. Cases A = 6, 4 = 16 are new
integrable cases which possess the full Painlevé property (for
A = 16 this is true in terms of y° rather than y). We have
indeed been able to compute the integrals of motion of these
two cases at order 4 and 6 in the velocities. The two remain-
ing cases are, at best, genuine weak-Painlevé cases and candi-
dates for integrability. However we have not been able to
identify a second constant of motion, at least up to order 6 in
the velocities.

IV.DIRECT SEARCH FOR INTEGRALS OF MOTION FOR
THE HOLT POTENTIAL

In this section, we look for potentials of the form

V=)'G(x) +yG;(x) + Gsx) + F(p), (10)
for which the equations of motion admit, apart from the
energy, a second invariant quartic in the velocities. Such po-
tentials are a generalization of Holt’s form. Following the
method exposed in Refs. 2 and 8, one immediately sees that
because

I/ch3 = O,
the form of the invariant will be

C=fp'+8X° + 81Xy + 8° + A, (11)
where f; is a constant and g,, g,, £, # are functions of x and y.

The expressions for the g;’s read

g8o=VGl +)G;+G,, g = —29G —G,,
g =2G, (with4f,=1). (12)
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We now write the last relation that allows the calcula-
tion of 4 and which will impose constraints on the nature of
the arbitrary functions G, and F:

gl(Vxx - Vyy) + 2(g2 _gO)ny - (2g0,y _gl,x)Vx
+ (28, — 81,)V, =0. (13)

It is clear that different kinds of terms will be involved
in this relation.

Let us first consider the case where F = 0; the only
terms depending on y in this relation are of the form y* ¢ (x),
for k a non-negative integer up to 3.

The preceding relation leads thus to four distinct equa-
tions. Quite easily, one realizes that G, has to be set to zero if
G " #0 and we are thus left with the two relations

GiG”+5G1Gy =0, G|J"+3GJ +2G7J=0

(withJ = G; — 2G,). (14)
A nice algebraic solution (with G { #0) is
G, = u*3.

Integration for J is quite easy and reads

2/3 2/3

+pux7,
and the potential ¥ has the form

V=x" 4 kx*?3 4 ux 72 4 9x*3, (15)

J=kx

We will now introduce the function F. If Fis not polyn-
omial, it will not interfere with other terms in relation (13).
Thus G, and J are not modified, which leads to the following
equation for F:

3F'4yF" =0,
that is, F = v/y*.

The most general solution of that kind is thus the fol-
lowing:

V=x"32 4 kx?? 4+ ux3 4+ 3 vy’ (16)

This is in fact a generalization of the Holt potential with
A = 6 which we recover for k = v = 0. However we have two
extra terms in x*/* and 1/y* which are compatible with the
existence of an integral of order 4:

C= x4/4+ (yz —2/3 +K'X2/3 +§x4/3 +ﬂx—2/3)x2

6x”yxy+7x4/3 2 4 pix =43 _ gy2x2/3
— 2% 4 1Y ok 4 81x8/3 + 2Pux—43
+ 9ux?? 4 x4 4 9yt Py, (17)

At this point two interesting results can be obtained
concerning previously studied Hamiltonians. Indeed consid-
er the case where Fis a polynomial of degree 4, namely

F=ay+by’+cy+d.

Consider first solutions where G, = 0.

The two preceding relations for G, and J are trans-
formed into

G G, +5G!G, —6aG; =0,
G J"+2G7J+3GJ —4cG; =0,
andb=d=0.
From the first equation, we get
= (A /4)x%, a = 164,
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from which one obtains for J,

+vx 8,
and the solution ¥ writes

V=28y"+ 6x%? 4+ x* + ux~

J=kx" 4 pux~?

24 vx T 4 k(x4 A7)
(18)
This potential has been examined in our paper on inte-

grable polynomial potentials, and its second integral of mo-
tion was identified. We remark here that the additional

terms ux ™~ ? 4 vx ¢ do not destroy integrability. Indeed the
second integral is
C=x*+ (24x%" 4+ 4x* + dvx~° 4 4ux 2

+ du(x? + 4R — 16px>xy + 4x*? + 16x%y

+ 16x%° + 4x® + 16xy°x* + 48vx~*? + 16y’

+ 8kx® + ¥ 4 4kPxt 8": LakT 42'“/

x x
+ 4(v2/x’2) + 8ux. (19)

In the case G,#0, similar calculations lead to the
Hénon-Heiles potential which has been integrated by us'®
and, independently, by Hall.® The integral of motion is again
quartic in the velocities and integrability is preserved despite
the addition of terms of the form /x> + v/x°. So this inte-
grable Hénon—Heiles potential reads

= (a/2)x* + 16y%) + d (x’y + 18°) + u/x* + v/x5,

(20)
with invariant
1. ,u dx® .
C=—"x*+ x + dx? + + x?— =%
4 2 4 3 y
2ivy+ 2/.w 4 _Vz_ B dzx4 )
x8 3
d*® ax* (av+,u,) 2
— + —udy. 21
T T el (21)

For the case A = 16 we look for a second integral of
degree 6 in the velocities (having verified that degree 5 did
not lead to any interesting results). We have in general

C =ex® + e,x°p + e,x** + e, x°)° + e x* + esx)®

+f5 + LXY + X+ S5 + St

+ 80X + g1xp + 89° + b, (22)
with the £}’s, g,’s, and 4 functions of x, y and the ¢,’s con-
stants. The absence of j® in C guarantees that C is not pro-
portional to H >. From the compatibility conditions® we find
readily

es=e,=e5=0,

while some further calculations give e, = 0. The f;’s can thus
be computed:

Jo = 6ey’x* + SeAX 2, fi=12x" 'yle, — 3ey),
Jo=4ey°x% + Ix* (A /3)e, — e, + 3ey), (23)
fi= —24ex®tly, f,= at2

with @ = — 3. For the calculation of the g¢’s we have a first
compatibility condition
(A —21)e, + 15¢, =0, (24)

18e,x
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and their general form is

go=A0y4x2a+B0ny2a+2+Cox2a+4’

g1 =AY X + Byx? Y, (25)
82 = Ap'x™ + By'x™** 1+ O,

with
Ay=12e, B, =18le,+ 36(e, — 3e,), Co=%A7%,
A, =24{e, — 3e)), B, =1%le, —3e)4d —9),  (26)

A, = 4e,, B, = 12(4 — 6)e,,

C,= — ey —3e) (3P4 —38) + YU %,
The last compatibility relation for the calculation of 4
reads

(e, — 3eg)A 2 — T4 + 6)=0. (27)

So either 4 = 1 or 4 = 6 or e, = 3e,. The first two cases
were found previously: for the first, the present invariant is
the square of the cubic integral, while for the second, we have
the product of the energy times the quartic invariant. The
only remaining possibility is e, = 3e, and replacing back into
Eq. (24), we find A = 16. This gives us a genuine sixth-order
integral of motion

C =% + 3p%%* + 6(x* + 2x5)(y* + 12x3x /3
— 72x"Pyxy? 4 54x%/%)4
+ 12(% + )y + 144x
+ 72x23pH4x? — 59%) + 8(y° — 35p%x?
+ 432p°x* + 1728x%)x 2. (28)

Cases A =27 and A = 236 do not have second integrals
of motion up to degree 6 in the velocities.

V. DISCUSSION AND OUTLOOK

In this paper we have presented evidence that the weak-
Painlevé concept which we have introduced in our previous
work is not associated exclusively to 2-D Hamiltonians with
a quadratic second constant of motion. Two integrable
Hamiltonians have been analyzed: one due to Fokas and La-
gerstrom and one due to Holt. We have shown that the solu-
tions of both Hamiltonians are of the weak-Painlevé type,
i.e., they present algebraic branch points of a specific type
fixed by the dominant behavior of the equations of motion.
The variety of these “natural” exponents makes the exis-
tence of a transformation, through a change of variables,
from weak type to a full-Painlevé pole-type expression ex-
tremely improbable. (This richness of natural exponents
would be even greater if we had included in our Painlevé
analysis the additional terms discovered in Sec. IV.)
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At this point a question still lingers concerning the Holt
potential. Are the cases corresponding toA = 27 and A = 236
indeed integrable? (The resonances being at m = 12 and
m = 22, respectively, make the check of the compatibility
condition next to impossible.) We have not been able to iden-
tify a second constant of motion up to order 6 in the veloc-
ities. Calculations beyond this order would necessitate ex-
tensive formal computer calculations of increasing
complexity.

As a by-product of our calculations we have obtained
additional terms for the Hénon-Heiles potential as well as
for the quartic polynomial potential, the integrability of
which we had treated in our previous work.

As a conclusion we can state once more that the singu-
larity analysis is indeed a most powerful tool in the domain
of nonlinear systems.
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I. INTRODUCTION

There seems little need to motivate a paper which is
concerned with the existence of explicit integrals of motion
in classical mechanics. From the earliest days of the subject
much attention has been given to the question of the exis-
tence of such integrals; however, comparatively few general
results are known. Indeed, at the present time our knowledge
is essentially confined to several disparate examples though
we do entertain the hope of some much more general unify-
ing theory.

The present paper has several objectives. In Sec. II, 1
give some results which enable integrals of motion to be writ-
ten down if the Hamiltonian of the system has a certain form.
In Sec. III, I investigate the conditions under which a system
has integrals of motion which are polynomial in the momen-
tum variables and make a number of observations about
these conditions. In Sec. IV, I work out in detail an example
to show how the conditions just referred to may be used in
practice and some of the difficulties which may be encoun-
tered. In Sec. V several more examples are outlined using the
theory of Sec. I1I.

The notation used here is mainly that of the traditional
tensor calculus. The summation convention applies
throughout and, with the exception of example (5) in Sec. V,
all indices are lowered. The phase space of the systems con-
sidered is 2m-dimensional with m taking particular values in
the examples.

Il. SOME GENERAL RESULTS ON INTEGRALS OF
MOTION

The results which I give here belong properly to the
realm of symplectic geometry. Thus, throughout N denotes a
symplectic manifold and { , } denotes the Poisson bracket
on F(N), the ring of functions on N.

Proposition 2. 1: Suppose that H is the Hamiltonian of a
system and that

H=f(4,B,,..B,),

where 4,B,,...,B,€F (N ) and fis a function of the r + 1 argu-
ments indicated. Suppose also that {4,B;} =0 (1<i<7).
Then {H,4} =0.

The proof of Proposition 2.1 is trivial from the proper-
tiesof { , ] and though it may seem innocuous it can some-
times yield useful results. The next result has been given
before but I shall now expand upon it considerably. Again

2 Current address.
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the proof is straightforward using the derivation properties
of { , }].

Proposition 2.2: Suppose that H,A,B,P,QeF (N )and that

H={4+B)/(P+Q)
where {4,B} ={P,Q} ={4,0] ={P,B}| =0. Then

{H,4Q — BP)/(P+ Q)} =0.

The last result leads immediately to the following, the
proof being similar.

Proposition 2.3: Suppose that H.4,,P,eF (N ) (1<, j<r)
and that

H=(d, + 4+ + AP, + P+ +P),
where

{A,4;} =[PP} = {A,,P] =0 (1<i, j<r).

Then
AP, + -+ P) = Pi{dy + -~ +4,)
P +P,+ - +P, ’

Az(Ps + -+ P, + P _Pz(As + -+ 4, +A1)

P+ P4+ P, ’
AP+ + P ) =P+ +A,_))

Y P1+Pz+"'+Pr
are r integrals of motion for H which themselves mutually
commute. In particular, if » = dim(¥ ) and these integrals
are independent, the system determined by H is completely
integrable in the sense of Liouville’s theorem.

The last two results seem very closely related to some
classical results of Liouville (see Whittaker'). Also, one
could write down more integrals by using Proposition 2.2
and choosing, for example, 4 =4, +A4,,B=A4,+ -+ 4,
P=P +P,Q=P,+ -+ P,etc.

1Il. CONDITIONS DETERMINING THE EXISTENCE OF
POLYNOMIAL INTEGRALS

Consider a standard Hamiltonian of classical mechan-
ics
H=1ip p + Vix,),
where (x,, p;)is a coordinate system. Suppose that fis a con-
stant of motion for the system determined by H and that
f= Aa,---a,rpa, ."pan
+ Aal---a,, - lpal '"pa" L + -+ Azz,pal + A’

where Aya A Ay A are symmetric tensors of

ap-a,
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rank n,n — 1,...,1,0, respectively. The conditions that H and
Jfcommute are easily seen to be

A"’l"'”m"n o 0,

Aa, ay =06 (3.1)
A[ﬂl"'“n va, ) n V.iAa,---a,1 _ i

A.a| = ZI/JAali’

0=V,A,.

Several remarks can be made about (3.1). First, if Vis itselfa
polynomial in coordinates then so too is /- Second, the alter-
nate equations of (3.1) decouple into two sets and so it suf-
fices to look for constants of purely odd and purely even
degrees. Third, the first two equations of (3.1) define 4,
and 4, .
and 3).

A Killing tensor is the natural generalization of a Kill-
ing vector which is well known in connection with the exis-
tence of momentum integrals. In a recent work* I showed
that on a general (pseudo-Riemannian) manifold of dimen-
sion m, the (vector) space of Killing tensors of rank n has
dimension less than or equal to

(m+n— Nm+ n)
(m — 1)m!al(n + 1)!

-,

, as Killing tensors of the metric §;; (see Refs. 2

un

and following Kalnins and Miller’ that equality is attained if
and only if M is of constant curvature. Moreover, I adduced
evidence that on flat spaces the Killing tensors are generated
by just the Killing vectors.

Killing tensors appear to have originated in the context
of general relativity but naturally they are much more diffi-
cult to deal with on a manifold which is not flat. Also, Wood-
house® introduced the concepts of Killing pairs and confor-
mal Killing tensors which correspond to integrals of motion
which are rational in the momenta and integrals of motion
for the null geodesics in relativistic mechanics, respectively.

Returning to (3.1} it is clear that linear integrals of mo-
tion are determined by Killing vector fields which preserve
V. This is well known from Noether’s theorem and so I shall
not discuss linear integrals here. Quadratic integrals, which
from the preceding comments may be taken in the form
A;; p; p; + A, correspond to rank 2 Killing tensors which
also satisfy the conditions.

A, =2V 4

A (3.2)
Here 4 may be eliminated from these conditions leaving sev-
eral linear second-order partial differential equations to be
satisfied by V. For the case of two degrees of freedom, condi-
tions (3.2) reduce to a single independent condition which
has been the subject of several investigations'’~® and shall
not be repeated here. More generally, when using (3.1) to
detect polynomial integrals of odd or even degree the second
highest degree term is always subject to some linear equa-
tions which also involve the components of the Killing ten-
sors. However, for degree 3 constants or higher there will
also enter nonlinear equations which make the problem of
finding such integrals much more complicated. Example (6)
in Sec. V gives an example of such a complication.
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V. A SPECIFIC EXAMPLE

I shall next give a rather detailed example of how Egs.
(3.1) may actually be used in practice. Referring to Sec III, I
suppose that m =2 and write X =Xx,, y =X, p, =P1,
P, = P, lalso assume that ¥ = V'(x — y) and so the quantity
M=Jp, +p,lis a constant of motion by Noether’s
theorem. Besides M and the Hamiltonian A there must be
one more functionally independent integral depending on
(x, ¥, px» p,) and one may ask whether this third integral is
polynomial in momenta. It is quite straightforward to show
that if the polynomial has degree 2 or 3, then up to various
inessential additive and multiplicative constants
V=1/(x -y} (4.1)

Now suppose that fis a degree 4 integral. By consider-
ing thesequencef,{ LM },{{ .M}, M],.. itisclearthatitis
sufficient to look for an f whose Killing components are of
degree less than or equal to 1. Note that { ,M } #0, other-
wise there would be three mutually commuting integrals
{H,M, f} which would force f to be dependent on H and M.
More generally, one may refer to a polynomial integral as
trivial if it can be obtained from polynomial combinations of
constants of lower degree. In two dimensions it is certainly
true that the Killing tensors are generated by the Killing
vectors® and so it is sufficient to take the degree 4 term of the
integral as

A Pi Pj Pi Pr
=4(yp. —xp,)
X(D\p} — 3Dyp% p, + 3D, p, pi — D, p;)
+ E, px +4E;p] p, + 6Es p’ p;
+4E,p, Pi + EzP;,

where the D ’s and E’s are constants.

Now applying conditions (3.1) one obtains the following
system of equations where a prime denotes differentiation
with respect to the variable x — y:

All,l :4V’(A|n| _Alll2)!
An,z +2A12,1 =12V'(41112 — A1 122)s

V=x—y or

(4.2)

4.3
A22,1 + 2A12,2 = 12V'(A1122 _A1222)’
Azz,z = 4V/(A1222 - Azzzz)»
and
A,l = 2V’(All —A12)’
4.4)

A,z = 2V'(A12 —Azz)-

Equations (4.3) yield partial integrability conditions on the
A;;: one can use the first pair and last pair to obtain, after
differentiation, expressions for 4,,,, and 4,,,,. Then de-
mand that 4, ,,,, = A4, ,,;,. One obtains

15(Dy + D, — Dy — D)V"™ + (2D, (x — 2) + 2D,(2x — y)

+ 6D,y — 6Dx — E, + E, — 2E, + 2E)V""" = 0.
(4.5)

It follows since V' = ¥V (x — y} that
15D, + D, —D; —DJV" + (3(Dy + D, — Dy — D,)(x — y)
—E, +E,-2E;+2E)V"" =0, (4.6)
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and
(Dy—D, — D3+ D)V =0, 4.7)
or else
D, +D,—D,-D,
=D,-D,—D;+D,=E,—E,+2E,—2E,=0.
(4.8)
If (4.6) and (4.7) hold, ¥V is of the form
V=K{x~—y) or V=0~ +q/(x—yf (49
where K is a cubic polynomial, Q a quadratic polynomial

and, ¢ some constant. Next, using (4.4) one obtains the
further condition

Ay —Ap)V" =41, — Ay —Ap, + A0 )V
{4.10)
It follows from either of conditions (4.9) together with (4.10)

that V has one of the forms given by (4.1) and that fis neces-
sarily trivial.

1

f=4yp. —xp,)p: —p,)

~ Inext turn to the other alternative, i.e., that (4.8) holds.
Using the fact that M *,HM * H * are all polynomial integrals
one may further suppose that either
E, =E,=E,=E,=E, (4.11)
or

D= —-D,=1, E\=E,=FE,=E,=E;=0.
(4.12)
Equation (4.11) leads once again to V' =x — y. Equa-
tion (4.12) in conjunction with Eq. (4.10) leads to the follow-

ing condition where W' = V-
WW" + 3(x —y)W'W"

+3x—y\W'W"+ R2W'W" =0. (4.13)
Besides the solutions equivalent to (4.1), (4.13) gives a third
possibility, i.e., that ¥ = 1/(x — y)*/>. Thus the Hamiltonian
given by

H=(p; +p})+ 1/x =y
has the quartic integral f given by

+ 8(p. =P, N ¥Dx —xp,) — (x — y)(Px +p,)) + (32(x +)
x—y

(x —y"

)4/3 .

Moreover, this is essentially the only system which admits a nontrivial quartic polynomial.
The result may be generalized as follows. Define the Hamiltonians H,., k = 0,1,2,..., by

Hy =(p% +55)+ 1/(x — /@i,
Then f, is an integral of degree 2(k + 1) where
1
Efk =(Px +Py)(22k+1\0

1 (k\2k+1,
2k -1

2k +1

22k-1

1 5 1 k+1
—2(x +.V)(:(Px —-p) + x _y)2/(2k+!)) )

V. OTHER EXAMPLES

(1) Consider the system with m degrees of freedom
whose Hamiltonian is given by

H=1ip p, +e
where e is a homogeneous function of degree — 2 and also

{=7_ | p;»e} = 0. This system is a variation of the Calogero
system. '®!2 The following integrals were found using (3.1):

E=xxp p—xx;p; 0; + 2x;x;e,
m m m
F=( z x,.)pjpj —X; p; ( z p,.) + 2( 21 x,-)e.
i=1 i=1 i=
(2) As another variation on the Calogero system consid-
er the system with m degrees of freedom whose Hamiltonian
is given by
H=}p,p, +e+flxx)
where e is a homogeneous function of degree -— 2,
{Zr | p;,e} =0, and fis any function of x* = x-x. This time

J
one has the integrals

E=x;x; p; p; — %:X; p; p; + 2x,x.e,
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1 (k) 2k +1 [x — )2k k1)

x __y)(Zk-A 1)/{2k + 1)(px _py)2k~1 o — (

—p, !
y

1

k)2k+1

W1 (x —y) /@& + N p, —py))

2

—
D= ( Z CAVIEETDY (p,»))( Z (x:)p; — Z “’"’)

2
+2( Sx)le+1)

so that for m = 3 this system is completely integrable.

(3) In this example I consider a system with two degrees
of freedom whose Hamiltonian is given by

H=Yp; +p)+ V{x*+y).
This is the angular momentum analog of the example treated
in Sec. IV so that yp, — xp, is an integral. If one asks for
those ¥ which have nontrivial quadratic or cubic integrals it
turns out that in the former case

V=x2+y> or V=1/x*+y})"2%
In the latter case one finds there are no ¥’s which have non-
trivial cubic integrals. This underlines the importance of the
harmonic oscillator and Kepler potentials which is indeed
what these two are.

(4) The system with two degrees of freedom whose Ha-
miltonian is given by

H=\pl+p)+xy—y/3

Gerard Thompson 3476



was considered. This is the infamous Henon—Heiles system
of celestial mechanics. Using (3.1) it was found that the sys-
tem has no integrals of degree 1, 2, 3, or 4 besides H itself.
This provides fragmentary evidence to corroborate the con-
clusion of Leach.!?

(5) In the next example I consider a class of systems
which includes the type considered in special relativity. Let
H be the Hamiltonian where g; ; is a flat metric of any signa-
ture and

H=({1 +gijpi pj)1/2 + V.

The analog of (3.1) gives, where *“;” denote the covariant
derivative with respect to g, ;,

A al-ua,,_ll/;‘_ =0,
A al-..a,,fll/;i . 0’
A a.iV;i =0,
AV, =0.

It follows that in looking for polynomial integrals it is suffi-
cient to consider just homogeneous polynomials. Also, this
system has precisely the same /inear integrals as the classical
Hamiltonian H ' given by

HI:%gijpipj + V.

(6) In this last example I will first of all consider the
problem of trying to obtain cubic integrals for systems in
general, then specialize to a particular kind of system with
two degrees of freedom. The cubic integral may be assumed
to have the form

Aijkpipjpk +4; p;, (5.1)
where 4, is a Killing tensor. One of the two remaining
conditions from (3.1) is

A(i,j] = 3V,kAijk- (5.2)
Now differentiate (5.2} twice to obtain
A(i,j)lm = 3V,k1mAijk + 3V,k1Aijk,m + 3V,kmAijk,1
+ 3V A jiim- 5.3)

The left-hand side of (5.3) is symmetric in all four indices and
so insisting that the right-hand side be symmetric too, gives
the following system of linear, third order, partial differen-
tial equations for V:
AV kim + Aijiom Via + Aijig Viem + Aijoim Vi
= Ajlk V,kim + Aljk,m V,ki + Aljk,i V,km + Aljk,im V,k- (5-4)

Clearly one also obtains analogous linear conditions on ¥
starting with any polynomial constant whose degree is big-
ger than 1.

Now I specialize to the case m = 2 and consider, on
grounds of tractability, a cubic integral of the form

(yp. —xp,)* + 4p, + Bp,,
where again I write x=x,, y=x, p, =p,, p, =p,, and
A=A4,, B=A,. The remaining conditions of (3.1) may be
written as

A (2,27,

ax O ady
dd  JB av av
_+_=_6x< __x_..), 5.5
dy Ix 4' a dy 5-3)
JdB 2 ( av c?V)
— =3 |y——x—),
ady Ix dy

3477 J. Math. Phys., Vol. 25, No. 12, December 1984

and
(5.6)

Condition (5.4} is most easily obtained from (5.5) directly,
much as (4.5) was obtained in Sec. IV. There is a single equa-
tion which is

xznyxx - ('x3 - nyz)Vxxy + (y3 - Z’xzy)nyy
+ 8xnyx + 8(_}’2 __x2) ny

— xy*V,

»y

—8xyV,, + 1V, — 12xV, =0. (5.7)
The solution of (5.7) is
V=fx*+y’)+g+h (5.8)

where fis an arbitrary function and g and 4 are homogeneous
functions of degree — 2 and — 3 respectively. Thus, impos-
ing the second condition in (3.1) imposes strong conditions
on the form of V.

In view of (5.8) it is convenient to change coordinates so
that

E=x2+y*, p=y/x
In order that the transformation be canonical one must also
have that

P = prg - (y/xz)pn’ py = 2yp§ + (l/x)pn
and the Hamiltonian, in view of (5.8) may be written as

e 1+ 770, +Gm)  Hy)
H=2p; +f(€)+ 2% =k

for some functions G and H. The cubic integral now assumes
the form

(1 +9%p; +ap; + bp,,, (5.10)
for some functions ¢ and b. It remains to satisfy the last

condition in (3.1) as well as to relate @ and b to f, G and H.
One finds that

(5.9)

da
2§a—§-—a, (5'11)
2 6b 22 0@ _
4 3 + (1 +77) p 0, (5.12)
all+7°) (1+7°) db 2by
2 & I ¢
_ 202 G'(n) | H'(n)
3(1+7 )( R + Rk ) (5.13)

but the last condition (5.6) has still not been applied. Still
without applying it, it follows that the cubic integral has the
form

(1 +7%p; + 6 (n) ' p,

(1 + 772)20:
* (Tz(n) + 31+ 7°)G (n) Jp,, (5.14)
where 6 is a function of 7 satisfying
0 +(1+7n%0" =6(1+79)H'. (5.15)

When (5.6) is applied one finds that the function fis a sum of
three functions homogeneous of degrees — 1, — 2, — 3, re-
spectively. Then one may argue in several stages that there is
no loss of generality in supposing that f=0 and G =0. The
cubic integral then has the form
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(1+ 9%, + 65" p, + (1 + 7776 /2 ),
where in addition to (5.15), @ and H are also bound by the
relation

36H = (1 +7*)0'H . (5.16)
Next, setting

Ksecz=0andy =tanz (5.17)
(5.15) and (5.16) are transformed, respectively, to

K" 4+2K=6H"cosz, (5.18)

3JHK=H'K'+ H'Ktanz, (5.19)

where a prime denotes differentiation with respect to z. One
can obtain a single, albeit rather complex, third-order equa-
tion for K by differentiating each of (5.18) and (5.19) with
respect to z and then using all four equations to eliminate H,
H',and H".

Finally, I shall summarize the results of this example
using the original notation. It has been shown that the only
systems which have a potential of the type given by (5.8)
which have an integral of the form (yp, —xp,)’
+ Ap, + Bp, are those which have a Hamiltonian given by

W% +2}) + Hp/x)/(x* + )72
In this case the integral is given by

—(yp. —xp,)’ + Kx(xp, +yp,)

|
2(x2 _+_y2)1/2

()

(ypx _xpy)])
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where a prime denotes differentiation with respect to
z = arc tan( y/x). Moreover, H and K are related by (5.18)
and (5.19)—conditions which imply that H depends on three
arbitrary constants.
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An N-dimensional anisotropic elastic body without the interior gravity is, under some conditions
concerning the N th dimension, equivalent to an (¥ — 1)-dimensional isotropic elastic body under
the influence of the interior gravity. According to this theorem, our method of solving the

equation of free motion of anisotropic elastic bodies includes Bromwich’s method of solving the
equation of motion of incompressible isotropic elastic bodies under the influence of the interior

gravity.
PACS numbers: 03.40.Dz, 04.20.Me
I. INTRODUCTION

Long ago Lamb' invented an ingenious method of solv-
ing the equation of free motion of isotropic elastic bodies.
Lamb’s method reduces the equation of elastic motion to
some Helmholtz equations. Bromwich? generalized Lamb’s
method to the equation of motion of incompressible isotrop-
ic elastic bodies under the influence of the interior gravity.
Bromwich’s method also reduces the equation of elastic mo-
tion to some Helmholtz equations. Bromwich showed, by
using his method, that the period of the spheroidal vibrations
of a sphere of the same mass and size as the Earth and as rigid
as steel would be diminished from 66 to 55 min by the natural
gravitation of the parts of the sphere.? On the other hand, we
generalized, in a recent papaer,* Lamb’s method to the equa-
tion of free motion of C_ anisotropic elastic bodies.” The
C . generalization also reduces the equation of elastic mo-
tion to some Helmholtz equations. Using the C_ generaliza-
tion, we have obtained all the exact solutions of the guided
elastic waves of C_ anisotropic elastic cylinders.® Thus,
Lamb’s method was generalized to two physical systems
which are quite different from each other.

We shall prove that the C_ generalization includes
Bromwich’s method as a special case. The two generaliza-
tions correspond to two quite different physical systems, so it
seems to be strange that one includes another as a special
case. However, a viewpoint of Kaluza—Klein type will make
this strangeness melt away. In the approach of Kaluza—
Klein type, an object in a higher-dimensional space-time or
space having some symmetries describes different physical
objects in a lower-dimensional space-time or space. For ex-
ample, in Kaluza—Klein’s unified field theory,” a metric field
in a five-dimensional space-time describes a metric field and
an electromagnetic field in a four-dimensional space-time.
In general relativity, if a four-dimensional space-time is
vacuum, stationary, and axial symmetric, the space-time is
known to be equivalent to a two-dimensional space with
matter fields.® We shall see that elasticity theory also has
such a structure as these examples.

Wetreata C elastic body in an N-dimensional Euclid-
ean space, but we neglect the interior gravity. Latin indices
are used to label an arbitrary Cartesian coordinate system in
the N-dimensional Euclidian space. We write p for the mass
density, #’ for the unit vector along the C_ direction at each
point, ¢y, for the stiffness tensor, »’ for the displacement
vector, s;(=u,; ) for the strain tensor, and 77 for the stress
tensor. Then the free motion of the N-dimensional C_ elas-
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tic body is given by the equation of elastic motion

a% i
patZZTJJ (1.1)
with a constitutive equation, called Hooke’s law,
TY = c¢%g,,. (1.2)

First we shall prove that the C_ elastic body has such a
structure as theories of Kaluza-Klein type: The N-dimen-
sional C elastic body without the interior gravity is equiva-
lent to an (N — 1)-dimensional isotropic elastic body under
the influence of the interior gravity under the following con-
ditions concerning the N th dimension.

(C1) The n' is a parallel vector field: n’; = 0. So, select-
ing a specifical Cartesian coordinate system, we can make
the direction of the N th coordinate axis coincide with the »’
direction. We use such a specific Cartesian coordinate sys-
tem (x',...,x"). We also use Greek indices to label a specific
(N — 1)-dimensional ~ Cartesian  coordinate  system
(x',....x" ~ 1), which covers an (¥ — 1)-dimensional Euclid-
ean space whose normal vector is the n’.

(C2) The displacement vector ' is sinusoidal along the
n', and it has the period 27/k: u', n* = iku'. And also the k
is infinitesimal:k—0.

(C3) The nonvanishing stiffness components concern-
ing the n’ direction are infinitely stiff: cyyynv— 0,
CLu NN~ 05 Oy —> 00«

The limit values O and « in conditions (C2) and (C3)
will make Eq. (1.1) vague. To avoid the vagueness, we shall
have to specify sequences of numbers leading to the limit
values. In the following proof, such sequences of numbers
will be specified.

Successively, using the above theorem, we shall prove
the statement described in the beginning: The C_ general-
ization includes Bromwich’s method as a special case.

Il. THE PROOF OF THE THEOREM

The stiffness tensor ¢, with the C_ symmetry isinvar-
iant under the rotation around the n’. Therefore, the tensor
must be constructed only from scalars n’ and the (¥ — 1)-
dimensional metric tensor and alternating tensor in the quo-
tient space modulo n”. The most general expression of the
tensor is then as follows:

Ciikt = }‘hijhkl + Z,uhi(khllj + §(hijnknl + hklninj)

+dqnihyn,, +Sninngn,, (2.1)
where 4, u, £, 7, § are scalars. They are assumed to be con-
stant. The A, is the (N — 1)-dimensional metric tensor, and it
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is h; = 0 for i#j, h,, = 1, hyy = 0 in the specifical Carte-
sian coordinate system.

Substituting Egs. (1.2) and (2.1) into Eq. (1.1), and pro-
jecting the resulting equation into the (¥ — 1)-dimensional
space and into the ' direction, we have

%" 2
P g2 =#Alu#+(,u‘+‘/l)5,#_7]k uﬂ+[§+7])s,’u’
(2.2)
9w . .
po = AW+ ikGs + ik (E 4+ 7, 23)

where we have used conditions (Cl) and (C2). The
4,=d, d* is the Laplacian in the (N — 1)-dimensional Eu-
clidean space, and w=u", § =u*,, s=w,n’ are the dis-
placement along the #’, the (N-1)-dimensional volumetric
strain, the strain along the »’, respectively. Differentiation of
Eq. (2.3) along the ' gives

% 2 2

pLE = nA s — ks — k*(E + )b,
where we have used condition (C2).

Let us normalize the six N-dimensional matter con-
stants p, 4, 4, £, 1, § by introducing an arbitrary constant L
with the dimension of length: p=Lp, A =LA, and soon. The
p has then the dimension of (N — 1)-dimensional mass densi-
ties, and the A, g, &, %, £ have the dimension of (N — 1)-
dimensional elastic constants. Instead of four constants 5 s 7
5, k, we define four new constants:

(2.4)

LI | S
d+2m) = 7
2=l 4pe =LK 2.5)
p P
Moreover, let us normalize the variable s as follows:
= — [ +7)/pls. (2.6)

Using ¢, p, A, i instead of s, p, 4, 1, and M 2, m?, v?, G instead
of &, m, &, k, we see that Egs. (2.2) and (2.4) turn out to be’

..,c')zu” —~ o~ 3 3 ~ 2
P = BA @+ 118 — L+ M — 41,
(2.7)
4, -1 % 2\ _anGps 2.8
L—W—mfﬁ——ﬁp- (2.8)

Now we consider the limit values described in condi-
tions (C2) and (C3). As is seen from Eq. (2.1), the limit values
of condition (C3) are equivalent to £— 0, 7— 0, §—> . Ac-
cordingly, the v” is infinite, but the limit values of M %, m*, G
are indefinite. Their limit values are dependent on sequences
of numbers leading to k—0, &~ o0, 77— 0, {— 0. There are
sequences of numbers which give

s, M50, m?>—0, M?/m’—afinite value,
G—a finite value, (2.9}
because we can solve Eq. (2.5} as
K7 A +2a)M? §=/~w2<( ] 4rGp? )1/2 B 1),
pv* (A +2a)M*
P SR (2.10)
= pv-, =) .
p=pv, £=p )(A+2p)M2
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and so the limit values (2.9) give k—0, £—>w, 7— oo,
£{— o0.'® The specifical limit values (2.9) reduce Egs. {2.7)
and (2.8) to

Y LT S -
P =AW+ RS e (2.11)
A b= — 4wGpé. (2.12)

The reduced equations (2.11) and (2.12) allow us an interest-
ing physical interpretation. We consider a (VN — 1)-dimen-
sional isotropic elastic body under the influence of the interi-
or gravity. Let us decompose the displacement vector into
the displacement of the static equilibrium state and the dyna-
mical deviation from the static state. In the same way, we
decompose the potential of the interior gravity into two
parts. Then, as is easily ascertained, the dynamical devia-
tions of the displacement vector and the interior gravita-
tional potential satisfy Egs. (2.11) and (2.12)."* The u* and ¢
are then the dynamical displacement vector and the dynami-
cal interior gravitational potential, respectively. The G, p, /T,
and /i are Newton’s gravitational constant, the mass density,
and Lamé’s elastic constants, respectively.

If the argument above is conversely followed, we can
easily see that the two equations (2.11) and (2.12) in the
(N — 1)-dimensional Euclidean space can be combined into
only one equation (1.1) in the N-dimensional Euclidean
space under conditions (C1)-(C3).

In the above proof, we have decomposed the displace-
ment and the interior gravitational potential into the static
equibrium parts and the dynamical deviation parts. If you
wish, it is possible to avoid the decomposition. To see it, let
us shift the z* by the position vector x* normalized with the
dimension (N-1}): #*=[1/{N — 1)}x* — u"*. Moreover, let us

transform the ¢ as ¢ = — ¢. Using the #* and @ instead of #*
and ¢, we can rewrite Egs. (2.11) and (2.12) as
Y L _ oz <=
P =R G+ B — (2.13)
A d=4nGp(1 — &), (2.14)

where & =i# , = 1 — 6. If the transformed #* and & are
reinterpreted as the displacement vector and the interior gra-
vitational potential, Egs. {2.13) and {2.14) are exactly the
equation of motion and Newton’s law of gravity for the
(N — 1)-dimensional isotropic elastic body under the influ-
ence of the interior gravity.

lIl. BROMWICH’S METHOD AS A SPECIAL CASE

Recently we exploited a method of solving Egs. (2.2)
and (2.3) for the vibrations with an angular frequency w. The
method is a generalization of Lamb’s method for isotropic
bodies to C bodies. According to the C_, generalization,'?
the s consists of two terms

s =s(p) + s(g)- (3-1)
Each term is determined by Helmholtz equations
(A, +p)slp) =0, (4, +¢’)slg) =0, (3-2)
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where

PAd_A+2u+npw’— [EA+2) —EE+2m)1k>

2 29(A + 2p)

(3.3)

2 27(A + 2u)

The & also consists of two terms

5§=056(p)+6(q). (3.4)
Each term is given by

() = l— 17" + po® — CE*V/(E + )k *1s(y)s

Y =p9 (3.5)

The displacements #* and w are constructed in the following
way:

u = uyt + up, (3.6)

w = s/ik. (3.7)
The u,,* is given by

ugt = —p ) — g5 (g) " (3.8)

The u,)* is determined by a vector Helmholtz equation with
a constraint equation:

4, + Kz]um" =0, uy*,=0 (3.9)
where
K=(pe*® — nk?)/u. (3.10)

Thus, the C_ generalization reduces the equations of mo-
tion (2.2) and (2.3) into Helmholtz equations (3.2) and (3.9).

Let us now consider the limit values (2.9). The p?, ¢°,
and «? then reduce to

p* = (po® + 47GpA/(A + 241), (3.11a)
g’ =0, (3.11b)
K> = po’/ji. (3.11¢)

Rewriting Eqgs. (3.1) and (3.2) by using Egs. (3.11) and (2.6),
we have

¢=4¢Pp)+dlg) (3.12)
and

(4, +p"¢ () =0, (3.13a)

4, +¢’)d(g) =0. (3.13b)

Equations (3.12) and (3.13) show that the potential ¢ is deter-
mined by two Helmholtz equations. Equations (3.5) turn out
to be relations between ¢ (y) and 6 (y):

p~?8(p) = (1/47Gp)¢ (p), (3.14a)

¢ = —0 (g (3.14b)
Owing to Eq. (3.11b), Eq. (3.14b) yields

S(g)=0. (3.15)
Accordingly, Eq. (3.14a) turns out to be

p~ 28 =(1/4wGp)é (p). (3.16)

Owing to Eqs. (3.15) and (3.14b), Eq. (3.8) turns out to be
uyt= —p28" + 0 ¢ (g " (3.17)
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pZ—qzz[(u + 2+’ — (LA +2u) — £ +217)]k2)2_ (pwz)z—pwz(n+§)k2+77§k4]1/2.

NA + 2u)

|

Equations (3.11)}~3.13), (3.16), (3.17), (3.9), and (3.6) form a
method of solving Eqgs. (2.11) and (2.12). The potential ¢ is
determined by adding two potentials ¢ (p) and ¢ (q) which are
the solutions of the Helmholtz equations (3.13). The ¢ (p)
yields the (N — 1)-dimensional volumetric strain § through
Eq. (3.16). The displacement vector u* is obtained by adding
the u;)* that are calculated from 6 and ¢ (¢) according to Eq.
(3.17) and the u,* that is the solution of the vector Helm-
holtz equation (3.9) with the constraint equation. Thus the
equation of motion (2.11) and Newton’s law of gravity (2.12)
have been reduced to Helmholtz equations.

Successively, we consider the incompressible limit

pi=lim18. (3.18)

A—oo

50

In this limit, the equation of motion (2.11) and Newton’s law
of gravity (2.12) turn out to be

0 e
P 8t2 =/J'Aiu# +pl,#’ —P¢, ’ (319)
A,$=0. (3.20)

The incompressible limit for Eqgs. (3.11)—(3.13), (3.16), (3.17),
(3.9), and (3.6), which form a method of solving Egs. (2.11)
and (2.12), must produce a method of solving Eqgs. (3.19) and
(3.20). The limit A—ow gives p>—0. Thus, owing to Egs.
(3.16), (3.11a), and (3.18), Eq. (3.13a) turns out to be

4,p,=0. (3.21)

Then, in order that Eq. (3.13b) is consistent with Eq. {3.20),
we must have

¢ (p)=0. (3.22)
On the other hand, Eq. (3.16) yields

limp=26 = 21 — 26 3.23

P P’ + 4nGp? | 4nGp 223

6—0

In order that Eq. (3.23) is consistent with Eq. (3.22), we must
have
G=0. (3.24)

It seems that Eq. (3.24) contradicts the interpretation that
the G is Newton’s gravitational constant. However this is not
s0, because in the incompressible limit both the equation of
motion (3.19) and Newton’s law of gravity (3.20) do not in-
clude G. On account of Egs. (3.23), (3.24), (3.22), and (3.11c),
Eq. (3.17) turns out to be

Uyt = — po®) 'p F +o g

= — (@), — pé )= — (@) '@t (3.25)

Equations (3.20) and (3.21) yield the equation for the ¢:

4,9=0. (3.26)
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Equations (3.26), (3.25), (3.11c), (3.9), and (3.6) form a meth-
od of solving Eqgs. (3.19) and (3.20). Thus, the equation of
motion (3.19) and Newton’s law of gravity (3.20) have been
reduced to Helmholtz equations. This method is nothing else
but Bromwich’s method of solving incompressible isotropic
elastic bodies under the influence of the interior gravity.'?
Accordingly, the C_ generalization includes Bromwich’s
method as a special case.

'H. Lamb, Proc. London Math. Soc. 13, 189 (1882); see also A. E. H. Love,
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“According to Eq. (2.8), v is the propagation velocity of ¢, m is a masslike
quantity, and Gis a coupling constant. Here M is also a masslike quantity,
because differentiation of Eq. (2.7) with respect to x** yields

(Al — «._L:i;wMz)a ==L Ay
T oo I+
'®Any sequences of numbers leading to the order of infinity & ~* ~7' ' 2,

§'~ﬁ' b §~ﬁ2 with @ >0 yield the limit values (2.9). For example,
kn Eknz J,./z’ §n Eguzznv UM En()zn’ Q,E’?ozzn (n =12,..).

""Under the volumetric strain §, any infinitesimal volume d¥ changes to
dV (1 + 8),sothemassdensitygchangestop/(1 + &) =p(1 — )+ 0(57).
Accordingly, [15“ - ‘S)]stauc equibrium  part :ﬁ(l — Syatic equibrium purl]’
[.5(1 -6 ']dynamlca] deviation part. — 55 dynamical deviation part -
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ascertained, any relations in Ref. 4 hold for arbitrary dimensions.

"3Our ¢ and @ correspond to Bromwich’s — ¥ and ¢, respectively.
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Multifrequency inverse problem for the reduced wave equation:

Resolution cell and stability
V. H. Weston
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The multifrequency inverse problem associated with the reduced wave equation

Au + k*n*(x)u = 0,x € R *is examined for the case where the data set is sparse. The resolution cell
or solution set is examined in detail and is shown to be an infinite-dimensional manifold. The
concept of stability is introduced. It is shown that the intrinsic condition of structural stability to
the inverse process selects out a preferred set of solutions from the solution set. The structural
stability of various iterative schemes used in the inverse process are examined.

PACS numbers: 03.40.Kf

I. INTRODUCTION

In a previous paper' the multifrequency inverse prob-
lem associated with the reduced wave equation

Au+ k*n*x)ju=0, xeR? (1

was treated for the sparse data case. All that was specified
about n(x) was that it was real, piecewise continuous, and
equal to unity outside a given domain D. An iterative tech-
nique was developed to solve the inverse system using no
other a priori knowledge on n(x). Here some of the details in
the theory behind the method are examined, and it is shown
that the technique employed did contain a natural intrinsic
condition that selected a stable solution.

There are two main items that are concentrated on here.
Because of the nonuniqueness of the inverse problem with
sparse data, the structure of the solution set (resolution cell)
is examined in some detail. In particular, it is shown that the
solution set is an infinite-dimensional manifold. If however
v(x), where

vix) = n*(x) — 1, (2)

is restricted to lie in a given 2N-dimensional subspace, the
solution set will (under general conditions) consist of isolated
points. But such solutions will depend critically upon the
choice of subspace, and can be quite different for different
subspaces. This feature of the solution set being an infinite-
dimensional manifold whose intersection with a 2N-dimen-
sional subspace is an isolated point set, is a serious problem
for the sparse data case. This has been recognized by various
members of the scientific community, Backus and Gilbert,2
Bevensee,® and Bertero and De Mol,* who have developed
various regularization techniques for the associated linear-
ized problem. For the nonlinear problem, it is shown here
that the additional requirement of structural stability will
select out a preferred set of solutions from the solution set.

It should be pointed out that, although the nonunique-
ness of the problem under consideration is well-known,*°
the more difficult question concerning the structure of the
solution set for the full nonlinear problem has not been ex-
amined. This knowledge is essential in order to examine the
effect of the requirement of structured stability on the solu-
tion set, and to show that it is a viable constraint.
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ll. INVERSE PROBLEM

The inverse problem under consideration here consists
of determining the index of refraction of the scattered body
from a finite set of N measurements of the scattered field.
The /th measurement consists of obtaining the value of the
scattered field u*(x,,k;;v,,) at a point x, exterior to the body,
and at a frequency associated with the wavenumber k,,
where the scattered field is produced by an incident field
u{x,k;). Each measured scattered field may be produced by a
different incident wave. For simplification the notation
u;, (x,} will be used for the measured quantity u*(x,,k,;v,,.).

The inverse problem can be stated as follows: Find a
solution v of the system of N nonlinear complex functional
equations;

I=1,.,N. (3)

This can be placed in a more explicit form. Let v, repre-
sent a (known) comparison body, G, its Green’s function.
Then as stated,' the above system (3) is equivalent to solving
the system (/ = 1,...,N)

ki) + K [ G, (ximde) o) — v, 0)]

Xu(yki)dy — uy, (x,,k;) =0, (4a)

where u(x,k;) must satisfy the integral equation

w(x,,k;30) — uy, (x,) =0,

ulx k) = u, (k) + k2 f G, (xwiki)
D

X [v) — v, 0)]u(y.k,)dy. (4b)
[Here u;, (x,,k,) represents the scattered field at x; produced
by the same incident wave u/(x,k;) on the comparison body

Ve ]

Ill. RESOLUTION CELL
A. Definition

We shall define the set of solutions v of the inverse prob-
lem Eq. (3) [or equivalent system (4a) and (4b)] as the resolu-
tion cell (solution space). It will be shown that the resolution
cell is not an isolated set of points but an infinite-dimensional
manifold.
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B. Formulation of the problem
Letv, =v,,, then Eq. (4a) reduces to

w(x;,k,50) — u,, (%)

—k? fD G, (15K, )lo — vy Julp )y = O, (5)

with /= 1,2,...,N, and where u(x,k,;) must satisfy Eq. (4b)
with G, replaced by G,, and v, by v,,,.

It is immediately obvious as expected, that system (5) is
satisfied by v = v,,,. However the existence of other solutions
in a region close to and containing v,, can be demonstrated
by considering the linearized version of Eq. (5) where v — v,,,
is sufficiently small so that the term u(y,k;) in Eq. (5) can be
replaced by u,, (y,k;). Using the notation introduced in the
previous paper’

k %Gm ik u,, 0.k) = Hip3v,,) + iH,  n30,,)s

the linearized version of system (5) can be reduced to the
system of 2N real equations

f H(xw, wx)dx =0, [=1,.,2N,
D

where w = v — v,,,. This has the nonunique solution

V=V, =pp",
where @* is an arbitrary function in the space C, (D N4,
where .# ,, is the space spanned by H, (x;v,, ), kK = 1,...,2N.
This suggests that to study solutions of system (5) in a
region close to and containing v,,, a solution of the form

Uy (X) = Uy () + @' (x) + 3 i Hix;0,,) (6)

k=1
should be taken. Here it is convenient to normalize ¢ so
that

Ie*ll = ([ pax) " =1

By then fixing the value of ¢* (x), the unknown expression (6)
contains 2N + 1 real variables u,c,,c,,...,C,x, and the asso-
ciated inverse problem reduces to a problem in a space of
2N + 1 dimensions. With @' a fixed prescribed value, set

S1;61565,. 468 ) = us(xl’kl;vp) — u,,(x;), (7)
where v, is given by Eq. (6), then the inverse problem for
finding solutions in a region about v,,, , consists of solving the
N complex nonlinear functional equations

filuseanean) =0, =1, N {8)
for the 2N + 1 real variables y,c,,...,c,5. The point corre-
spondingtov,, istheoriginy = ¢; = +» = ¢,y = 0. Foreach
choice of ¢*, the corresponding solution of Eq. (8) will give
solutions in a prescribed (2N + 1)-dimensional space con-
taining v,,, .

To solve the complex system for the real variables it is
convenient to decompose it into real and imaginary parts by
setting

Sl 1sesean) = Fy(u;cq5e-505n) + iFl+N(/‘;c1"--’czN)’ 9

yielding the system of 2.V real equations
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Fi(t;¢1yCan) =0, 1=1,...2N. (10)

With 2 real equations and 2N + 1 real unknown var-
iables, one of the variables can be taken as a parameter and
the resulting solution will describe a curve in the 2N + 1)-
dimensional space. That portion of the curve that is contin-
uous and goes through the origin will be sought. This will
then yield the projection of the resolution cell surrounding
v,, on the (2N + 1)-dimensional space spanned by ¢* and
{H\(x;v,,)}2 ,. It is convenient to take u as the parameter
for the portion of the curve in the neighborhood of the origin,
since the linearized solution corresponds to the straight line

Cl="'=c2N=0’#=;u"

C. Solution of £, = 0, for small values of parameter .

We will use the modified form of Newton’s method to
solve system (10) for small values of the parameter u, and will
seek the solution such that ¢, = ¢, = - =¢,5 =0, when
4 = 0. We will use the notation that ¢, F (u;c) represent col-
umn vectors in R >, with their transposes given by

c"={epton], Fe)' = [FFon],

and F_{ u;c) (the Fréchet derivative of F with respect to c) is
the linear operator represented by the matrix with (/,k )th
component ‘

IF
Ewm={§4, (11)
k

and F__(u;c) (the second derivative of F') is the bilinear opera-
tor with (/, j,k Jth component

J°F, ] 12)
dc,. de; '

With the above notation, system (10) can be expressed in the
compact form

F(ue)=0. (13)

With p as a parameter, we seek a solution of (13),
¢ = c(u) such that

Fumd=(

lim ¢(u)=0.

u—0
With this in mind it is convenient to take as initial point in
the Newton process c® = 0. Thus the modified Newton iter-
ation procedure will be given by

P =0," " =c"— FF(uc") s (14)
where
Toy=[F.(m0)] " (15)

To obtain both an explicit form of the solution and an
estimate on the range of | u| which insures convergence of
the iteration process, we need the following results. From the
relation [derived from Egs. (7) and (9)]

Fy{pse) + iF; v pse) = wilxg, k; Up) — U,
together with Eq. (6) and the result given in the previous
paper’

Su’lx;; v,) = (H,(v,) + iH, , 5(v,), 6U,),
it is seen that the differential of F; with respect to v, is given
by
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8F,( i) = (H,[v,), 8v,)- (16)
Hence it follows that
L) _ (), Hylom) (17)
dc,
TEAED _ (B ifo,), Helow)) Hyom)): (18)
de,, de;

In addition, from Eq. (16), the Taylor expansion in z with
¢ = 0is given by
F(:0) = F(0;0) + p(H,(v,,), @)

+ A p(H (v, + OupY) @)@l 0<O<1.

Using the result that F,(0,0)=0, and ¢ ‘1.4, the above
simplifies to

Fpw0) = p(H v, + ") e ") (19)
Thus for small values of u, we have to the leading term
Fip0)~Lg*(H ), ¢ @) (20)

To obtain the leading terms in i of the inverse matrix I, we
note that from the Taylor expansion for the right-hand side
of Eq. (17) with ¢ = 0, we obtain

IF,

— =Hy(v,,) + A ) (21)
dcy,

where H), (v,,) = (H, (., ), Hr (V)
Ay (p)=plH v, + 10,9 He(v,)), ¢ (22)

where 0 < 6, < 1. It is thus seen that when H = {H (v, )} is
nonsingular,

Lo=U+H"A(p]"H, (23)
where A () is the matrix with coefficients 4, (). For small z,
it is easily seen that 4,, ~O (u), hence

Lo~ [T+ OW)H ~',,). (24)

Combining results of Eqs. (14) and (24) it is seen that the
leading term in g of the solution ¢ of system (13) is given by
the first iterate ', yielding

c~H v, )F(1;0), (25)
where the F;(u;0) are given by Eq. (20). Thus it is seen that
clp)~0 ().

Recall that the solution of the linearized problem is giv-
en by

V=0, +pup,

thus we see that the nonlinear correction to this is of order
u*. The neighboring solution to v, of the order u? is given
explicitly by

V=1, + ”¢l - %ou‘zH B l(vm )p'H(Um )’ (26)
where p is a vector with components
P =((H v, )@ )@ ). (27)

We now want to get an estimate for the range of u for
which Newton process (14) converges. As a preliminary we
need the following notation and definitions.

For the functions H, (x;v) and H } (x,y;v) we use the re-
spective .¥,(D ) and . ,(D X D) norms,
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1E (o) = j H2 (xs0,,)dx,

1H o)) = fD B, drdy,

and for a vector 7 in R?" the norm

2N ) 172
= (3 )"

Set T
K= (3 1) 28)
Ko = (3 1zR) 29)

where werecall v, is given by Eq. (6). We will assume that the
positive matrix H (v,,) is nonsingular, and set

A = smallest eigenvalue of H (v, ). (30)
Then set
Ho = Aa (K KA(0;0)) 7", (31)
r=3puK !
K, = Max K,u;c). (32)
e

We can now state the result (with proof given in Appendix).

Theorem: For the parameter u in the range |u|
<1 uoKo(0;0)/K;. Newton’s iteration process Eq. (14) con-
verges to a solution ¢, in the ball ||c, , ||l <7

By taking all possible values of ¢*, the existence of the
resolution cell in a region about v,,, contained in a neighbor-
hood |lv — v, || ~ O (4,,) can be shown. Furthermore, the re-
gion can be extended by repeating the procedure with v,,
replaced by a neighboring value in the resolution cell. The
only problem with this continuation occurs when one ap-
proaches a singular point where 4, is zero. This is briefly
discussed next.

D. Solution in the singular case

For completeness a brief formal treatment of the singu-
lar case [when a point v,, in the resolution cell has a singular
matrix H (v,,)] is treated. It will be demonstrated that the
resolution cell is not bounded or terminated by the singular
points. Since the singularity of the matrix H (v, ) implies that
the set H, (x;v,, ), kK = 1,...,2N is linearly dependent, expres-
sion (6) for a point in the resolution cell adjacent to v,, will
have to be modified. Let

Rank H{v,,)=p
and assume that the H, (x;v,,) are ordered so that H,,....H,,

are linearly independent, and let the dependency relation-
ships among the H, be given by

2N
S aiH(xp,)=0, r=1,.2N—p. (33)

k=1
Set’

2N
S aHixow,)=a,(xp), r=1.2N—p. (34)

k=1

Then pick outaset of 2NV —p + 1 functionsl?ler 1 ,...,fIZN(x),
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and ¢* {x) such that they have the following properties: (i)
H,, \,..H,yand ¢" areorthogonal to Hy (x;0,, ),k = 1,...,p;
(i) the 2n — p square matrix with elements ((a,,¢"),H,) is
nonsingular; and (iii) (2;,¢" ),¢* ) = 0,i = 1,...,2N — p. Then
look for a solution in the resolution cell adjacent tov,, in the
form

14 2N A
V=0, +pup + Y oHixw,)+ Y o Hlx),
k=1 kK=p+41
(35)

where . is a small parameter, and the real constants ¢, are to
be found in terms of x. Now the system of equations (5)
become, for v — v,, small,

(Hl(vm ),U - Um) + %((Hl’(vm)’v —Um )’U - Um) F o= 0’ (36)

where ! = 1,...,2N. The insertion of expression (35) into (36),
combined with the use of properties (i){(iii) yields

P 1 p
> Hye + 7#2((111'«# bt ) tu Y (Hie')H, e
K=1

k=1

2N ~
tu Y (Hie')He +0(ck)=0, (37)
k=p+1

where / = 1,...,2N. Employ the linear dependency relation-
ships [Eqs. (33} and (34)] and the properties (i} and (iii) to
obtain the system of 2N — p equations

g S a9 ) Hoe

k=p+1
= —H kil ((an¢l ),Hk)(,‘k + O(Ci), (38)

where 7 = 1,...,,2N — p. Now because of property (ii) the co-
efficients ¢, , kK = p + 1,...,2N can be solved in terms of ¢, for
k = 1,...,p, where the higher-order terms O (c}) are neglect-
ed. The interest here is in the solution where the ¢, are close
to zero. The solution for ¢, kK =p + 1,...,2N can then be
inserted back into system (37) with / = 1,...,p resulting in a
system of p equations in p unknowns ¢, k£ = 1,...,p.
For small values of u, the solution is given by

2 p
o=—5 3 HullHig'e') + 0w (39)
k=1
for I = 1,...,p. Here H,, is the (l,k }th element of the pXp
inverse matrix to H,, = (H,,H,).
A rigorous treatment and analysis of Newton’s method
of singular points is given in Refs. 8 and 9.

E. Intersection of the resolution cell with a subspace of
dimension 2NV

In order to further delineate the resolution cell restrict v
to lie in a prescribed 2N-dimensional subspace .#, of
& ,(D), with basis {g; };Y,. Then v will take on the form

2N

v= 3 c@x), (40)

i=1
and the ¢;’s will be chosen so that v and v,, have the same
scattered field at the N pairs (x;,k;), i.e.,

I=1,.,N.

With the notation c¢¥ = [c,,...,c,5] and

w'x; k) — u;, (x,k;) =0,
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file) = Fifc) + iF; , ylc)
2N
=y (x,,kz; Z cjwj) —ul,(x.,k,),

j=1
the above system of equations reduces to a system of 2V real
equations expressed in vector form

Flc)=0,

where F7 = [F,,...,F,y]. With the derivative of F(c) being
given by the matrix with (/,k Jth component dF, /dc, it canbe
shown that

JF,
F'le)= [—] = (H,(v),x). (41)
acy
Define .#, as the subspace spanned by {H,(v)}7" ,, and let
. be a region of .# , such that v e ¥ when (i) {H,(v)}?",
are linearly independent, and (ii) the only vector in .#, or-
thogonal to .#, is zero. It then follows that for
v=23 c;p, in #, F'(c) is invertible and by the implicit
function theorem, the solution of F(c) = Ois a set of isolated
points. Thus it is seen that on restricting v to lie in 2N-dimen-
sional space, the solution of the inverse problem (when v is in
Y is an isolated set of points lying in the resolution cell.
Different subspaces .# ,, will give rise to different point solu-
tions.

F. Summary of properties of resolution cell

It has been shown that the resolution cell (solution
space) is not an isolated set of points but an infinite-dimen-
sional manifold. Its intersection with a 2N-dimensional sub-
space (with basis {@,}?%,) is a set of isolated points in a
region where the matrix with (i;j)th element {(H,,g;) is non-
singular. It is not known, however, whether the resolution

cell is a single connected region or a set of connected regions.

IV. STRUCTURAL STABILITY
A. Stability condition

Nonuniqueness is not serious if the set of solutions are
isolated points. Here, restrictions on the initial choice used
in any iterative procedure, and the design of the experiment
(the selection of measured data) will determine which parti-
cular solution is obtained. The more serious problem is the
case where the resolution cell is an infinite-dimensional
manifold. One needs additional criteria to select the proper
solution or solutions. Without using a priori knowledge, one
needs a condition that is intrinsic to the process. A natural
condition in the inverse problem wth sparse data is to select
stable solutions. Such a solution has the property that small
changes in scattered data produce small changes in the solu-
tion. If v,, is a solution corresponding to data u;, (x;.k,),
/=1,...,N, and 8u;, represents a small change in data, then
the change in solution dv satisfies the relation

oul, =0,
/= 1,...,N. On linearizing the system and decomposing the
complex quantity Su;, into real and imaginary parts,

du; (x,,k,) =4, 4+ 1A, 5, one obtains the system of 2V real
equations

(H,(v),6v) = 4, .

wix; kv, + 6v) — u,, (x,,k;) —
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From the previous paper' the least square solution of the
system has the property that

[|6v]|* = Z A Hy 4y,

Lk=1
where H,, are the elements of the inverse matrix H ~1(),
with H (v) = {H;;}.Thus for small ||6v|, ||H ~'(v)||, must be
small as possible. As a result, one can say the most stable
solution is that for which

Min||H ~'(v)|l,,
w(x;,kpv) — uy, (x,k) =0,
1=1,2,...,N.

Another possible condition for stability, although not
as practical to implement, is to look at the conditioning!®
associated with the matrix H (v), and require a solution which
minimizes || H ~|,)|H |».

B. Stationary point for 1,,

We want to briefly examine the points where |[H ~ ||, is
a minimum or, what is equivalent, where 4,, (the smallest
eigenvalue of A ) is a maximum.

Let the eigenvalues of H be ordered so that
A <A, << A 5. Assume that the smallest eigenvalue of H
has multiplicity psothat 4, =4, = -+ =4, = A. Let, be
the eigenvector (with components ¢/, j = 1,...,2N) corre-
sponding to A; and let {1, ] form an orthonormal set.

With the matrix H (v) and 4,(v) expanded in Taylor se-
ries in the variable v,

H+ 8H + 18°H + -,

A+ 84, +16%°4, + -,
it can be shown from well-known perturbation theory,'’ that

8A; = V6 HY,. {42)
Since the (i, j)th component of the matrix H is the scalar
product H; = (H,,H,) it follows that the (i, /th component
of the matrix 8H is

(6H); = (6H,,H,) + (H;,6H;).

Using the notation’
oH, = [ Hjkyuiouids,
to define the functions

z Vi H, (x;v), (43)

J—-l

(x.;:0) Z Vi H [{x.p;v) (44)

j=1
it is seen that

64, = 2(U,c,,bv),
where 1, is the integral operator with kernel a,(x,p;v). A
necessary condition for 4 ,, to be a maximum is that 54, = 0,
for! = 1,..., p, for all values of v and 6v such that v and v + Sv
is in the resolution cell. From Sec. III B, it is seen then that
Sv must be orthogonal to the subspace spanned by
{H;(v)};Y . Let B be the projection operator on this space.
Then 84,, /= 1,..., p must vanish for all dv of the form
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Sv = (3 — B)dq for any 8g in £ ,(D ). It then follows that a
necessary condition for A,, to be a maximum is that

(§—BWe,=0, I=1,.,p (45)

It should be noted that ¢;(x;v)=0 iff A,==0. This is easily
seen, since ¢, =0 implies that {H,}7Y, is a linear dependent
set, hence the matrix H;; = (H, ,H;)is singular. Thus a neces-
sary condition for A ,, to be a maximum is that

(¥ =B, =0, |lef|#0, I=1,..,p. (46)

One requires the additional condition that § °4,, >0 to
guarantee a local maximum. However without this condi-
tion, it is seen that system (46) coupled with the finite set (3)
reduces the number of possible solutions.

To clarify this last statement consider the case (used in
numerical computations) where v is restricted to be in a fin-
ite-dimensional subspace of dimension M where M>»2N. In
this case the requirement that 8v be orthogonal to {H, }7Y,
restricts dv to lie in a (M — 2N )-dimensional space. It is seen
that when the smallest eigenvalue has multiplicity 1 (p = 1),
the system 84, = 0 reduces to a system of M — 2N equa-
tions. When this is coupled with the set of 2V real equations,
Eq. (3) produces a total of M nonlinear real equations in M
unknowns, which yields isolated solutions at points (where
the derivative does not vanish).

C. Structural stability of inverse procedures
Here the structural stability of the descent process de-

veloped in the previous paper’ is examined. First note that
the problem of solving the system of complex equations

wlxp,kpv) — uy, (x,,k =B, {v) + iB;, 5(v) =0,
I=1,.,N

is equivalent to minimizing the real quadratic form
2N

> B.w)T;B;(v),
hj=1
where { T}; ] is a given positive definite matrix. Thus system I
giving stable solutions is equivalent to
2N h

MmEZB ()T, B;(v

Lj=1

2
Min Y'Y 6,H,6,

llell. =t

 I(a)

hj=1 J
The procedure developed in the previous paper’ com-
bines the two minimization steps making it more practical.
There the descent procedure is applied to the following mini-
mization problem
2N

Min }'}' B; (v)H ;B ). 1I
i j=1
However since || B;(v)|| # 1, the stability effect is not as
pronounced as ||B;(v)|| tends to zero. For this and other rea-
sons, the descent process is not carried out all the way but is
terminated when the approximate solution v is in the linear
region of a point in the resolution cell. At this point, other
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various techniques could be imposed such as that of Backus
and Gilbert? to get the smoothest solution.

It is clear however that the conjugate gradient and other
methods applied to the minimization of =¥, B ?(v) are un-
stable, and are only useful in the case of a large data base
when v may be satisfactorily represented by a point in a 2V-
dimensional subspace. For the latter situation it is expected
that the conditioning of the matrix H will tend to get worse
as NV increases, hence there is some measurement number &,
such that one can take as subspace dimension M = 2N orif N
is large enough M <2N.

D. Design of experiment

In order for the problem to be well posed an additional
condition or constraint has to be imposed to select a particu-
lar solution from the isolated point set. This is achieved by
proper design of experiment and initial choice of v used in the
iteration scheme. Although the actual requirements still re-
main to be completely formulated and rigorously verified,
some conjectures on them can be made based on physical
reasoning (verified by computational studies). In the design
of the experiment at least one of the measurements should be
made at alow enough frequency so that the Born approxima-
tion can be made. A suitable initial choice for v in the iter-
ation scheme is to take a value which is constant over D,
where the constant vy, is the value obtained from the Born
approximation. The remaining measurements should be
made at frequencies and positions that are sufficiently differ-
ent so that the matrix H for the body is not too singular. The
precise quantification of this remains to be done.
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APPENDIX: PROOF OF THEOREM

Here the proof of the following theorem is presented.

Theorem: For the parameter p in the range
| <3 oK ,(0;0)/K 5, Newton’s iteration process [Eq. (14)]
converges to a solution ¢, , in the ball ¢, , [l. <.

Proof: Using Schwarz’s inequality for the Hilbert space
associated with .%,(D X D) and the fact that we set
ll@* Il = 1, we have

[((H (v, )" )" )I<IIH ', )]]-
Hence it follows from Egs. (29) and (19), that for |u| <o,
IF( 14:0)])2<4 4K (O1:0)<} p°K, (A1)

where 0 <0 < L.
From Egq. (12) it follows in similar manner that

A )] < |1 H [0, + 1619 MIH )],
N

2 |A1k|2<(|/‘IK2(#61§0)K1)2:

Lk=1
where 0 < 6, < 1. Thus we obtain the estimate on the norm of
the matrix

4 |2 < || Ko 161;0)K. (A2)
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It then follows from Eq. (11) that the norm of the inverse
matrix satisfies the inequality

I oll<I1H =500 — [1H =Yl {21~
From Eq. (A2) it is seen that

1H |4 . <p,
where

p =1/ )K K, (A3)
hence

(1ol <(1/A4)(1 — p) ™" (A4)

To get an estimate for ||F,.( p;¢)||, for |jc]) <7, and |2} <,
we note that from Eq. (18)

ZF[ ,
ool <UL )
hence
) 2N 2F1 2
(1Fee (50)l2)*< ,-,k,12= \2e5c (s0)
<K1K3(p0)<K1K3. (A5)
Using the notation of Vainberg'? we have
|LoF (1:0)l2<7 = §[ L*K3/Ap(1 —p)], (A6)
1T oF e (i)l .<K = K 1K3/Ap(1 = p), (A7)
h =K =4(p/(1 —p)). (A8)

Thus for |1|<} 1oK5(0,0)/K;, it follows from Eq. (A3) that
p <}, and k <}. Hence from the Theorem (27.6) of Vain-
berg,'? the Newton process converges to a solution ¢, in
the ball

||C**||2<[(1 —J1—=2h)/h ]7] =T
It can be shown that for the range of x specified above,
2u’K, o 2K, (ﬁ)z Ll _,
Anm K,K5(0,0) \uo 2 K,
In addition from Vainberg, the solution is unique in the ball
|le|l, < Min(r,r,), where

ro=L14+J1=2Rr)/h 7.

re<2n =
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A rule for the total number of topologically distinct Feynman diagrams is presented for the
ground state of a system of many identical particles interacting via a two-body potential.

PACS numbers: 03.65.Db, 02.40. + m

I. INTRODUCTION

The idea of quantization comes from wave-particle
duality. One starts with the classical equations of motion of a
given system and quantizes them by treating the dynamical
variables as operators and imposing a specific algebra. This
procedure is called particle or field quantization, depending
on whether it is applied to classical particles or classical
fields. Given that field quantization leads to a many-particle
description, it is then natural to ask whether one can consid-
er a field-quantized description of many-particle systems.
This is possible, and the procedure is called second quantiza-
tion.

Although the concept of second quantization is essen-
tial in a relativistic theory where one wants to allow the total
number of particles in the system to be a variable, in nonrela-
tivistic problems it becomes a very useful technique when
one takes into account the statistics of the many-particle sys-
tem under study, without the need for symmetrizing or anti-
symmetrizing products of single-particle wave functions.
Only a few cases can be solved exactly' with the second-
quantized Hamiltonian, and often after a canonical transfor-
mation has had to be performed. In general, one must resort
to approximate methods in which part of the Hamiltonian is
considered exactly soluble and the remainder is treated as a
perturbation. In many-particle physics the perturbation ex-
pansion becomes quite cumbersome, but can be written in an
elegant and concise form using the language of Feynman
diagrams.’ The main utility of such diagrams lies in the fact
that one can represent graphically various terms in a particu-
lar series expansion, give a physical interpretation to them,
and easily perform sums of an infinite class of perturbation
terms. In fact, in many-body theory the interaction between
particles is not necessarily weak, so that a perturbation the-
ory in which one considers only the first term, or even the
first few terms, will not give satisfactory results. Feynman
diagrams have proved useful in developing techniques by
which we can pick out from the infinite set of all terms of the
perturbation expansion an infinite subset of terms which are
believed, on physical grounds, to be more important, and
sum them up to arrive at a reasonable approximation for the
quantity to be calculated. Moreover, as we want to show in
this paper, the number of terms that need be considered if
one wants to compute all the terms up to order n in the
perturbation expansion grows so rapidly that it becomes nec-
essary to stop at a very low value of n. In Sec. II we shall
briefly review the diagrammatic technique, and in Sec. III
we shall give a rule to determine, at each order 7 in the per-
turbation expansion, the total number of topologically dis-
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tinct diagrams one should consider to compute the ground-
state Green’s function of a system of many fermions
interacting via a two-body potential.

Il. GREEN’S FUNCTION AND DIAGRAMMATIC
REPRESENTATION

The field operator for a many-particle system in the
Heisenberg picture can be written as

Yalx) = Y5 (x)e =, t)
in terms of the field operator in the Schrodinger picture giv-
en by

Px) = S e (o 2)

Here H is the total Hamiltonian, ¢, , (x) is the single-particle
wave function, and é,, is the annihilation operator for the
state (kar), where k represents the momentum and « repre-
sents a spin component. If |1,) is the exact Heisenberg nor-
malized ground state, then the single-particle Green’s func-
tion at zero temperature can be defined as®

iGop(x:y) = (Yol T [ XI5 ()] o), (3)
where x=(x,t, ), y=(y,?, ), and T is the time-ordering opera-
tor. Here G,z contains observable properties of great inter-
est, for from it one can compute expectation values of any
single-particle operator in the ground or excited state of the
system.

The construction of the Green’s function for a nontri-
vial physical system, however, is a formidable job, and a
general approach is the use of perturbation theory which
splits the Hamiltonian as

H=H,+YV, (4)
where the problem for H, is assumed to be already solved
exactly. Perturbation techniques are most conveniently ap-
plied in the interaction picture, and for a many-fermion sys-
tem with a two-body potential ¥ (x,x,), the Green’s function
is given by

iGaﬂ (x’y) = i L_;_‘I)J' dtl'"f dtn
n=0 . — - oo

XABo|T [V (t1)-V (8, W X185 ( )] |60

X [{#o|U(+ w0, — )lgod 17", (5)
where |@,) is the unperturbed ground state, U (0, — w) is
the evolution operator, and the tildes remind us that the

operators are in the interaction picture. The two-body poten-
tial can be expressed in terms of field operators as
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1
Vix,x;) = z‘; d3x1 d3x2 Vi i (x,X5)
AR
py —
XY (XL (Ko (Ko (). (6)

One can then see that in order to compute the nth order
contribution to Gz, one must find the expectation value in
the unperturbed ground state of the time-ordered product of
4n + 2 creation and annihilation operators of the form

(BolT | T, 9 <1740 )16 -

Using Wick’s theorem,* given that vacuum expectation val-
ues are computed, one arrives at the conclusion that only the
fully contracted terms contribute.

It is possible to give a pictorial representation of each of
these terms by means of Feynman diagrams. The only dia-
grams which need be considered are the connected ones, be-
cause the disconnected ones are canceled at any order by the
vacuum polarization graphs which originate with the de-
nominator {¢,|U(c0, — w)|#o) appearing in Eq. (5). The
equation can then be written as

iG o 0,p) = i(_ 2iy f ) dtlu-J-w dr,

X (ol T [V (1) (2, W (X155 I]18o)'s

where the prime stands for “connected and topologlcally
distinct.” For example, for n = 1 there are only two such
diagrams which are displayed in Fig. 1. In general, at the nth
order each topologically distinct graph contributes »! times.

lil. THE RULE

We are now in a position to present a rule for the total
number of topologically distinct diagrams that can be drawn
for a system of many identical particles interacting via a two-
body potential. The number of fully contracted terms which
are generated by the expectation value (7) is

N(n)=Cn)+D(n)=(2n + 1), (9)

where C (n) is the number of connected terms, D (n) is the
number of disconnected terms, and # is the order of approxi-
mation in the perturbation expansion. We now give the fol-
lowing definition.

Definition: A term is said to belong to the class of order
p if p is the total number of interactions appearing in the
connected part of the term which contains ¢, (x) and ¢( y).

Clearly then (1) Ogp<n—n + 1 classes; and (2) the
above definition makes a partition of the set of N (n) terms

By

AN [

X Y By

FIG. 1. The two distinct Feynman diagrams for the case n = 1 in Eq. (7).
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into disjoint classes. Graphically this can be expressed by the
equation

(n)
F-Wef  Q)-

p=n
for the nth-order Green’s function, where the curly brackets
contain the whole terms belonging to the class p.
Indicating by d, () the number of nth-order terms be-
longing to the class p, we can write

n—1

S (11)

Denoting a free Green’s functlon by aset of parentheses ( , ),
each of which contains a pair of 4-space coordinates, we can
write a generic term of order # belonging to class p as

(X, )( ’ )( ’ )( ,}’)( ’ )( ’ )
2p+1 2{n —p)

d,(m=Cn) = N{n)—

and

number of terms of order p
= [belonging to class p ]
[number of permutations of
2(n — p) internal coordinates
[number of ways of connecting]

n interactions in groups of p

— C(p)2tn —pm(;)

=leo+ 1="S autpl|tzm—pn(7). 02

s -5 {20 —pn!(;)[(zp + 1)

p=0

Cn)=(2n

=S it 13

We note that Eq. (12) gives the number of disconnected dia-
grams of order n and class p in terms of the number of discon-
nected diagrams of lower order, provided that p <n. For
p = n, the equation simply says that d,, (n})=C (n) is given by
subtracting the total number of disconnected diagrams from
the total number of diagrams. For this reason we give both
equations, (12) and (13): the latter gives C () in terms of &, ( p)
with p <n.

TABLE L. Total number F (n) of connected topologically distinct Feynman
diagrams.

F(n)

=

10

74

706
8162
110410
1708 391

NV R WN—O
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TABLE II. Each term gives d,(n). The coefficients C (p) are obtained by
subtracting the sum of the first p terms of the ( p + 1)-th row from (2p + 1)t

0 1

1 2!((1)) c(y

2 4!(3) cu)z!(f) cR)

3 6!((3)) cuw(i’) C(2)2!(;) ci)

4 8!(3) C(l)é!(‘:) C(2)4z© C(3)2!(‘;) c@)

In order to obtain topologically distinct diagrams, we
note that (1) the number of permutations of » interactions is
n!; and (2) the number of ways to interchange the coordinates
in each interaction is given by

2=

The number of connected topologically distinct Feynman
diagrams for a many-fermion system interacting via a two-
body potential is thus

F(n)= C(n)/n!2", (14)
which is tabulated in Table I for values of n up to 7.

It is possible to construct a triangle which gives the
number C (n) for each n according to Eq. (11), as shown by the
diagonal elements in Table II. This triangle is shown numeri-
cally below:

1
2 4
24 16 80
720 288 480 3552
40 320 11520 11520 28416 271 104.

From Table I for the values of F(n), we see that the
number of topologically distinct diagrams grows rapidly. It
is now clear that any approach whereby one computes per-
turbation expansion up to a given order n becomes impracti-
cal even for small values of #. Thanks to the computing faci-
lities currently available, one might still want to compute for
a given system all the terms in the perturbation expansion
until convergence is achieved.® However, in the application
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of perturbation theory to very large quantum systems, i.e.,
systems with large spatial dimensions and many degrees of
freedom (like in quantum field theory, solid-state physics,
theory of real gases, and nuclear structure), one encounters
difficulties which are associated with the fact that even small
perturbations produce large changes in the energies and ei-
genfunctions of the whole system, because of the occurrence
of terms containing high powers of the volume in the pertur-
bation expansion of physical quantities. As a result, one of-
ten has to face the problem of an extremely bad convergence
of the series. Therefore, the diagrammatic approach is, in
general, totally different: one looks for suitable classifica-
tions of the various terms and retains oniy the most impor-
tant classes. For example, in Dyson’s equation’ one is able to
take into account, at any order of approximation for the
proper self-energy, an infinite number of terms appearing in
Eq. (5) by computing only a finite number of self-energy in-
sertions.
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A new method for summing strongly divergent perturbation series is presented. It is based on the
change of the power series into a convergent sequence by means of an order-dependent mapping
obtained from asimplescaling relation. The perturbation expansions for aone-dimensionalintegral
and for the ground states of the anharmonic oscillator and of the linear confining potential model
are accurately summed in the most unfavorable strong-coupling limit.
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I. INTRODUCTION

Perturbation series with poor convergence properties
proved to be the rule rather than the exception in quantum
and field theory. Due to this fact, summability procedures are
of utmost importance. Strongly divergent power series and
large-order perturbation theory have become very popular
since the pioneering works of Bender and Wu' and Simon? on
thequantum anharmonic oscillator. Excellent reviews on this
subject are available.>*

The purpose of this paper is to show a new method for
summing divergent power expansions that is very simple and
requires no knowledge of the asymptotic behavior of the
Taylor coefficients. The procedure is developed in Sec. II
and consists of transforming the power series into a conver-
gent succession by means of an order-dependent mapping
obtained from a simple scaling relation. It is then applied to
three well-known strongly divergent power series that are
accurately summed in the most unfavorable strong-coupling
limit.

In Sec. III we deal with a one-dimensional integral that
may be considered to be either the classical partition func-
tion of the anharmonic oscillator or a zero-dimensional ana-
log of some functional integrals encountered in ¢ *-scalar
field theory.” We consider the power series expansion for the
lowest eigenvalue of the anharmonic oscillator in Sec. IV and
that for the ground state of the linear confining potential
model in Sec. V. Finally, further remarks on the method are
made in Sec. VL

il. THE METHOD

Motivated by a sort of semiclassical approach to param-
eter-dependent systems,®’ we have recently developed a new
procedure (called functional method) that has proved to be
successful in obtaining accurate results from strongly diver-
gent power series by using a few perturbation terms.®~'° Sev-
eral models were treated; among them we can mention those
studies in the present paper,®'° the Stark'® and Zeeman®’®
effects in hydrogen. Though acceptable results were ob-
tained in all cases, the rearranged series included no more
than ten perturbation terms so that it was not clearly proved
whether they were convergent or merely asymptotic.

In this section we show an improved version of the
above mentioned method that can be easily applied to a large
number of problems in quantum and field theory. The view-
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point of the present approach is quite different from the pre-
vious one.*"'°

Let E(Z,A)(0<Z,A < o) be a real, unknown function
that obeys the asymptotic expansion

E(A)= S EA, (1)

=0
and the scaling relation
E(ZA)=Z°E(1AZ"), (2)

where a and b are real numbers and b < 0. It is our purpose to
show how to obtain an accurate enough approximation to
E (1,4 )[and also to E (Z,A ) in virtue of Eq. (2)] when the first
N + 1 coefficients E; are available. This problem is interest-
ing because it is often encountered in quantum and field the-
ory as will be seen later on.

Our procedure is based upon the fact that, due to Eq.
(2), the function

EKB)=EK{1-B}B) (3)
where K and 3 are real, positive numbers, can be written as

E(LA)=K ~“1—B) °E(KB), 4)
where

A=K"B(1-B). (5)

Since b < 0, this last equation maps0 <A < « onto0< B < 1.
To find an appropriate expansion for £ (1,4 ) in powers
of the bounded variable S we write

EKB)= Y E/(K)B" (6)
i=0
_ In order to obtain the coefficients E, (K ) we rewrite (4) as
EKpB)=K“1 —B)E(1,A(B)) and expand its right-hand
side in powers of 5 by using the mapping (5) and the expansion
(1). The result is

Bik)= S —y—(° 7

iy )k, 7)

where (C) =c(c — l)f¢ — 2)-+(c — i+ 1)/i? and ((c)) =1

)
According to Eq. (4), the sequence
SEy(K.B)=K ~*(1 —B)"“Sx(K.B)

Sy(K.B) = f: E(K)B', N=12,. (8)

i=0
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will converge towards E(1,4) if Sy(K,B)(N = 1,2...) con-
verges to E(K,8). A sufficient condition for this is that
Sy (K,1) converges to E (K,1) because B | < 1.

The parameter K plays a key role in obtaining a conver-
gent succession and its proper value must be determined care-
fully. To this end notice that E (K,1) = E (0,1) is K indepen-
dent. Therefore, if Sy(K,1) converges towards E (0,1), the
curve Sy (K, 1) vs K will exhibit a plateau whose extension will
increase as & increases. The existence of such a plateau is a
suitable convergence criterion and it seems to be most reason-
able to choose a K value that belongs toiits flattest part. In this
paper we use either the stationary point K %,(3Sy/dK)
(K = K 5,8 = 1) = 0, with the smallest absolute value of the
second derivative or the inflection point K 4,,(3*Sy/dK ?)
(K = K 4,8 = 1) = 0, with the smallest absolute value of the
first derivative. This point will be discussed in deeper detail in
the next sections.

It follows from the discussion above that K [and thereby
the mapping (5)] is order dependent. In this way, the original
power series (1) has been transformed into the sequence (8)

(with K = K, ).
On the other hand, the scaling relation (2) implies that
E(LA)Y=A ~“°E(A'"1), 9)
from which it follows that
}im/l “PE(1,4) = E(0,1), (10)

provided E (Z—0,1) exists. If in addition to this E (Z,1) satis-
fies a Taylor expansion about Z = 0 with coefficients ¢;, we
can write, according to Eq. (9), E(1,4) as

E(l,ﬂ):i*“/”zeii‘/”, e, =E(0,1), (11)

i=0
which is valid for large enough A values. Actually, each term
SE ), of the sequence (8) obeys both A- and A '? -power series.

The existence of a scaling relation like (2) is not neces-
sary for our method to apply. It often happens that the func-
tion we are interested in obeys two asymptotic expansions
like those in Egs. (1) and (11) which clearly determine the
parameters @ and b required for constructing the sequence
SE,.

There are two very interesting properties of our se-
quence SEy that were pointed out in our earlier works on the
functional method® ' and that can be easily proved using
the present formulation. They are discussed in the following
theorem.

Theorem:

(a) The stationary points K3,(dSEy/dK);
(K = K%) =0, are independent of A and thereby coincide
with K 5.

(b) The inflection points K14, (3?SE,/K?),
(K = K }) =0, are bounded functions of A.

Proof: The first statement follows from the fact that

<8SEN) =K—1(1 _B)—ai(b—l+ll8 b~1}—l
aK /,
N+1 .
X ¥ P(K)EY, (12)
i=o0
where
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alJ, .
P,(K):l.’,——b_lK('—é—K—)—(——a-f—l—l’J,_l
aJ;

K@p! 1( “‘), 13
+K@®B7 +1) 9K (13)

J, = K“°E,(k)if0<i<NandJ; = 0 otherwise. A straight-
forward manipulation of Eq. (7)showsthat P, = 0ifi < N + 1
which proves (a) because the stationary points X 3 are the
roots of Py, (K}

Calculation of (3°SE,, /9K ?), shows that (b) is also true.

At present we do not know what general conditions are
required for the sequence SEy (N =1,2,...) to converge
towardsthefunction £ (1,4 ). However, in the next sections we
will show that our method applies successfully to some well-
known strongly divergent power series.

lll. A SIMPLE ONE-DIMENSIONAL INTEGRAL

Our first example is the integral
E(ZA)= 7r_”2f exp ( — Zx* — Ax¥)dx, (14)
(1]

that is often encountered in statistical mechanics'' and field
theory.*. It has also proved to be useful in studying large-
order perturbation theory** because E (Z,A4 ) leads tostrongly
divergent power series like (1) with coefficients

E; = (— 1){4i)\/a2i)12%. (15)

Since E (Z, A ) obeys (2) witha= —1/2and b= — 2,
the method of Sec. II applies giving rise to the mapping

A=K B(1-B)" (16)

that agrees with the one used by Seznec and Zinn-Justin.’
From their results (obtained by the saddle-point approxima-
tion®) we know that the sequence SEy converges for all A
values when K > = const + 1.325 487N. Moreover, their nu-
merical calculation shows that SEy, actually tends to E (1,4 )
as N— o« {see Ref. 5).

In spite of the fact that our mapping equals that of Sez-
nec and Zinn-Justin,® we determine K in a different way.
However, it will be shown below that both methods yield
identical results in the present case.

We have calculated all the stationary (K %) and inflec-
tion (K §,) points of Sy(K,1) for 1 <N <24. There are one
stationary and one inflection point when N is odd and two
inflection points when A is even. A least-squares fitting of
the last six points in each case yields

(K%)= (1.169 + 0.001) + (1.3253 4+ 0.0003)N, odd N,
and 1)
(K 3> =(1.958 + 0.008) + (1.323 4 0.002)N, even N.

| (18)
To obtain Eq. (18) we have used the smaller X %, for each even
N that corresponds to the smaller value of
|(3Sy /3K )(K = K })|. Bothresultsareinexcellent agreement
with those of Seznec and Zinn-Justin® who choose Ky so that
E, vanishes.

When determining K, by either (17) or (18), our succes-
sion Sy (K y,1) converges towards E (0,1) from below yielding

SvKy,1) = 1.022 765 669, (19)
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when N = 23 (K %) or N = 24 (K %), respectively. The agree-
ment with the exact result

E(0,1)=I(})/27"? = 1.022 765 672... (20)

is excellent. Since E (0,1) corresponds to the limit A— oo [cf.
Eq. {10)], we are sure that even more accurate results will be
obtained for all finite A values.

The remaining inflection points that appear for all N
values can be accurately fitted by the straight line (using the
last 12 points)

K4, =(0.912 + 0.003) + (1.1534 + 0.0007)N. (21)

It determines a sequence Sy (K y, 1) that converges to a wrong
limit ( = 0.9203...). Straight lines Ky vs NV are always present
in our method and they always give rise to sequences con-
verging to wrong limits that were not predicted by Seznec
and Zinn-Justin.® Fortunately, these spurious sequences are
put aside by the requirement of smallest | (%S /9K ?)(K %,1)]
and |(3Sy /3K )(K %,1)|. Moreover, it seems to be a general
rule that the straight lines K —° vs N give rise to correct
sequences.

Most problems in quantum mechanics lead to more
complicated patterns of stationary and inflection points than
that just discussed above. However, our numerical investiga-
tion suggests that they all are quite similar, as will be shown
later on in the next sections.

IV. THE ANHARMONIC OSCILLATOR
The anharmonic oscillator

H{(ZA)=p* + Zx* 4+ Ax%, pz—i-;;z—, (22)

x
is also useful in checking our method because the perturba-
tion series for its eigenvalues are known to be strongly diver-
gent and many Taylor coefficients have been calculated for
the lowest eigenvalue.' Their asymptotic form is also well-

known (Z = 1)'"%
E, =~ —2(6/m)"*( —3)"(n — . (23)

It immediately follows from the Symanzik’s theorem®
that any eigenvalue E (Z, 1 ) of H(Z, A ) obeys (2) witha =}

and b = — }. This leads us to one of the order-dependent
mappings studied by Seznec and Zinn-Justin®:
A=K B(1—B)2 (24)

It is worth noticing that E (K,3) [cf. Eq. (3)] is an eigen-
value of the Hamiltonian operator

HK{1-B),B)=p>+Kx*+B(x*—Kx?). (25

It is not difficult to prove that in this particular case our
method is exactly equivalent to Caswell’s generalized Wick
ordering'? provided K is properly chosen. However, the
former is more general than the latter that only applies to
anharmonic oscillators and double-well potentials.'”> An
example of this last sort of model is obtained in our case
when B>1 because the Hamiltonian operator (25)
obeys H(K{1-B},B)=K"(B—-1)"

XH (— 1,BK 7328 — 1)7%/2), We therefore define

A=K7 —1)7"2 (26)
Unfortunately, Eq. (26) maps0 <A < « into 0 >8> 1dueto
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which we cannot obtain accurate eigenvalues for arbitrarily
small A values.' This is reasonable because we have two infi-
nitely deep wells when A—0.

In what follows we show the results obtained for the low-
esteigenvalue of (22) (withZ = 1)using the perturbation coef-
ficients given in Ref. 1. We begin with an analysis of the distri-
bution of the stationary and inflection points of S (K, 1)in the
K 3/2.N plane. Since both sets of points give rise to similar
patterns, only the inflection points will be discussed here in
detail. These are shown in Fig. 1. Each of the full lines A-D,
whichare straight lines X vs NV, generates a spurious sequence
that converges to a wrong limit. Though their convergence is
quite slow and we cannot handle enough perturbation coeffi-
cients to obtain their limits accurately, we can estimate them
tobeaboutof 1.3, 1.060 34, 1.060 3622, 1.060 362 09, respec-
tively. Obviously, as we pass from A to D we approach the
exact result

E(0,1) = 1.060 362 090 5... (27)

more and more closely. This step-by-step approximation to
the eigenvalue was previously pointed out by Caswell.'” The
path E that appears in Fig. 1 is not reasonable because it
means a decreasing order dependence. Therefore, it must be
avoided.

As argued before, the proper sequence is obtained by
keeping, for each & value, the inflection point with the smail-
est absolute value of the first derivative. It corresponds to
retain the smallest X 4, for each V. With such a sequence we
obtain

E (0,1)Pr = 1.060 362 09 + 10~%, (28)

that agrees very closely with (27). A similar analysis of the
stationary points yields exactly the same result. Clearly, our
method enables us to obtain the eigenvalues of the quartic
oscillator [H (0,1) = p* + x*] by applying perturbation the-
ory to the anharmonic oscillator (22).

Since 8= 1 (—w or Z = 0) is the most unfavorable
case, we expect our sequence SE, will approach an eigenval-
ue of H (1,4 ) very closely for all A values. In Table I we com-
pare our results with Banerjee’s very accurate nonperturba-
tive calculation'® showing an excellent agreement when
using either the inflection or stationary points. The accuracy
of our results is almost independent of 4.

701
K32
601
501
40F
30-

20r

{

1 1 1 1 1 1 1 4 |
18 8 13 17 20 26 28 33 37y

FIG. 1. Inflection points of Sy (K, 1) for the lowest eigenvalue of the anhar-
monic oscillator H (1,4) = p> + x> + Ax*.
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TABLE I. Lowest eigenvalue of the anharmonic oscillator H (1,4) = p* + x> + Ax*.

A E(1LAp E(LAYP error % E(1LA¥ error %
103 1.000 748 692 67 1.000 748 6929 2.0x1078 1.000 748 692 4 3.0x10728

1 1.392 351 641 53 1.392 351 6410 3.6x1078 1.392 351 641 3 1.4x107®
10* 22.861 608 870 27 22.861 608 82 2.2x1077 22.861 608 700 7.4%x1077

*“exact” (see Ref. 14).
> Equation (8) with N = 24 and K 1, = 6.916 413 786.

“Equation (8) with N = 23 and K'§; = 6.167 663 727.

V. THE LINEAR CONFINING POTENTIAL
The Hamiltonian operator
HZA)=p/2—Z/r+Ar, p= —iV, (29)
proves to be very useful in particle physics (see Ref. 15 and
references therein). It has also received considerable atten-
tion'®" because its eigenvalues lead to strongly divergent
perturbation series. In particular, the asymptotic form of the

perturbation coefficients for the lowest eigenvalue of H (1,4 )
is known to be'?

E, ~ — (18/me)( — 3/2)"n(n)). (30)

Clearly, this series diverges more strongly (and therefore it is
more difficult to sum) than that for the anharmonic oscillator

[cf. Eq. 21)].
A simple scaling argument shows that our method ap-
plies to this case with 2 = 2 and b = — 3 yielding
E(1,A)=K Y1 -B)"JEK.B),
A=K7B(1-8)"> (31)

It is worth noticing that E (K,8) is an eigenvalue of
HK{1-8}B)=p2—K/r+BAr+K/n (32)

that equals the partition of the Hamiltonian operator pro-
posed by Killingbeck'® and Austin and Killingbeck.'” How-
ever, they did not take advantage of the scaling relation (31)
and their power series rearranged as Padé approximants
proved to converge very slowly.'” Owing to this, their results
are of acceptable accuracy only for A values smaller than 1.0
{see Refs. 16 and 17). We will show below that our method
yields accurate results even for A values as large as 4 = 500.
To this end we make use of the perturbation coefficients
obtained by Privman.?°

One of the most attractive features of our method is that
the patterns of stationary and inflection points for all models
studied are quite similar. It seems to be a general rule that the
stronger the divergence of the perturbation series the larger
the number of points K in the same region of the K~ °-N
plane. This fact is illustrated in Fig. 2 where we show the
stationary points of Sy (K, 1) for the lowest eigenvalue of (29)
(with Z = 1). The full lines labeled A-E in Fig. 2 are straight
lines Ky vs ¥V that give rise to spurious sequences converging
to wrong limits. However, the convergence in this case is so
slow that we need a much larger number of perturbation
terms in order to have acceptable estimates of these limits.
Also in this case, we see a line (F) with a negative slope, A
more careful calculation, using more perturbation terms, is
required to show whether such negative order dependences
are due to numerical errors.
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The sequence Sy (K y,1) (chosen as discussed in Secs. II1
and IV) converges too slowly in this case to obtain a close
approachto £ (0,1) = 1.8557.... Thisisdue to the fact that the
present perturbation series diverges more strongly than those
studied  previously. Our  best  estimate is
E(0,1)p=" = 1.85 + 0.02.

The present perturbation calculation of E (1,4 ) is accu-
rate enough for most purposes. Table II shows that our re-
sults agree closely with those obtained by numerical integra-
tion of the Schrédinger equation®’ in quite a wide range of A
values. As far as we know, there is no other perturbation
calculation reported in the literature that yields such accu-
rate results with only 13 perturbation coefficients. For exam-
ple, our estimate of E (1,4 ) is somewhat less accurate in the
small- and intermediate-A regime than that obtained by a
{16/15) Borel-Padé approximant'® that requires 3 1st-order
perturbation theory but is a much better approach to the
“exact” eigenvalue®' in the strong-coupling regime. This is
due to the fact that |4 ~2/3(16/15)| tends to infinity as A— co
instead of being an approximation to E (0,1).

VI. FURTHER COMMENTS

The method developed in this paper is very simple, re-
quires little computational effort, and applies to a large var-
iety of problems in quantum and field theory. Two good
examples of the former are the Zeeman?®? and Stark?® effects
in hydrogen. These models, which have received consider-
able attention owing to their many physical applications (see
Refs. 22 and 23 and references therein), lead to strongly di-
vergent perturbation series**?* and their Hamiltonian oper-
ators obey scaling relations like (2).

3 91‘11315171921N

FIG. 2. Stationary points of Sy(K,1) for the lowest eigenvalue of
H(1A)=p>2— 1/r+ ir.

Arteca, Fernandez, and Castro 3495



TABLE II. Lowest eigenvalue of H (1,4 ) = p?/2 — 1r + Ar.

Y E(LAP E(LAP error %
0.685 871 06 0.284 1134 0.284 115 5.6x107*
4 2.796 002 8 2.795 754 8.9x1073
500 108.466 431 108.365 80 9.3x 1072

* Equation with ¥ = 13 and K ¥, = 1.830 718 5377.
beexact” (see Ref. 21).

Our method proves to be successful also in calculating
the rotational energy of diatomic and symmetric-top mole-
cules in electric and magnetic fields.?® In such cases there is
no scaling relation and the parameters a and b are obtained
from asymptotic expansions like (11) (see Ref. 26).

Some interesting features of our method that were point-
ed out before require further study. It would be useful to prove
why one obtains similar patterns of stationary and inflection
points in the K ~°-N plane for all problems having bound
states. It would be particularly fruitful to know the reasons for
the occurrence of spurious sequences based upon straight
lines K vs V. All these points are being studied at present in
our laboratory and conclusions will appear elsewhere in a
forthcoming paper.
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An extension of the Priifer phase function method for the bound state energy calculation is
presented. It is applicable to one-dimensional problems described by the Schrddinger equation on
the whole axis { — o0, 0 ) with a general class of potentials. Theorems are given which are a
generalization of the analogous ones concerning the half-axis (0, « ) problems that have been
presented in previous papers. The method is suitable especially for numerical calculations of the

bound state energy eignevalues.

PACS numbers: 03.65.Ge

I. INTRODUCTION

In a number of fields in physics the bound state energies
(BSE) of a system described by the one-dimensional Schro-
dinger equation (SE) with a real potential are of interest.'
Mostly, for the potential of a general form, the BSE have to
be calculated numerically.

In a previous paper,” the problem of the BSE for a sys-
tem described by the three-dimensional SE with a real cen-
tral potential was investigated in terms of the (modified)
Priifer transformation (PT)? and the theoretical framework
of a method for the numerical calculation of the BSE was
established. The method utilizes the PT and enables one to
find the BSE with a known accuracy using only the values of
a phase function at some distant but finite point.

The aim of the present paper is to modify the method
treated in Ref. 2, which, in fact, applies to a problem formu-
lated on the half-axis (0, « ), so as to make it applicable to a
one-dimensional problem formulated on the whole axis

{— o0,00).
We consider the SE,
d2
[—— +€e— w(x)] Yix,e) =0, (1.1)
dx?

for x€( — o0, 0 ), where €is a real parameter (energy) and the
function (potential) w{x) has the following properties: (i} w{x)
is a real function, finite for xe( — 0, ) and continuous ex-
cept for a finite number of points; (ii) there exist limits
lim, | |, wx)=w(+ o), lim,_, __ wx)=w(— «)andit
holds min{w( + =), w(— w)} > — « while it can be
max{w( + «), W — )} = + .

Denote i = min{w( + o), w( — o)}. In the following,
only the values of e€( — oo, i) and only the potential func-
tions satisfying (i) and (ii) are considered. We shall refer to
them as to the €, w(x) with the properties P.

It is known* that there exists a self-adjoint operator L
which is the (unique) extension of the operator L, induced by
the differential expression { — d 2/dx* + w(x)} with w(x) sa-
tisfying (i) and (ii) on the class of functions C (R ). The BSE
we are interested in are the eigenvalues of the operator L
contained in the interval ( — o0, ). According to the asymp-
totic behavior of solutions of Eq. {1.1) with w(x), € having the
properties P>° the BSE problem can be formulated in the
following way.
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Let 1{x,€) be a solution of Eq. (1.1) with w(x), € having
the properties P. Then the BSE problem is defined by

W — 0,6) =0, (1.2a)
W+ o0,6) =0, (1.2b)

and ¥(x,€) should be a continuous function of x together with
its first derivative.

It is convenient to treat individually the cases of a sym-
metric potential w(x) = w( — x), x€( — »,») and of a gen-
eral one. It is known that in the former case the solutions of
Eq. (1.1) satisfying (1.2) are either even or odd functions of x.
Denote these solutions ¥, (x,€), ¥5(x,€), respectively. Then,

¥,(0,)=0,
¥5(0,6) =0,
where the prime denotes the derivative by x. Each of these

conditions defines a solution of Eq. (1.1) which is unique up
to a multiplicative constant. We take the choice

L€ =1, ¥,06=0, (1.3a)
U506 =0, P08 =1. (1.3b)

The conditions (1.3) are crucial for the unique definition
of phase functions by means of which the BSE can be deter-
mined. If the potential is not a symmetric function one has to
utilize the asymptotic behavior of a function v{x,¢) defined by
the relation

v(x.€) = Yix,€)/Y'(x.€) (1.4)
to get a condition of the same meaning as (1.3). In (1.4) the
function y(x,€) is a solution of Eq. (1.1) with a nonsymmetric

potential w(x) and with € having the properties P. If this
Y(x,€) satisfies (1.2a) the following statements are valid:

lim vx,e) = (w(— o) —€)" V% fw(— o)< + o,

X—> —~

(1.5a)

)Hlir_nw vix,) =0, ifw(— o)== + oo, (1.5b)
there exists x,€( — o, 00) such that

v(x,€)>0, forxe( — oo, X). (1.5¢)

The proof can be carried out in full analogy with that of
Lemma 2.1 and Theorem 2.3 in Ref. 5.
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The conditions (1.5) define a solution of Eq. (1.1)upto a
multiplicative constant. We choose the solution ¥ = 9 (x,€)
of Eq. (1.1) satisfying the corresponding relation (1.5) and the
condition

1
fm %(x,e)dx = _i-

The conditions (1.5) and (1.6) replace (1.3) when the potential
has a general nonsymmetric form.

In the following we define the phase functions men-
tioned before by means of the PT. We give theorems which
establish the connection between asymptotic properties of
the phase functions and the BSE problem defined above.
Since there are three different sets of conditions (1.3a), (1.3b),
and (1.5), (1.6) which are essential for the definition of a
phase function the three cases are treated individually, i.e.,
(A) a symmetric potential w{x) and even bound state func-
tions (BSF), (B) a symmetric potential w(x) and odd BSF, (C)
a general nonsymmetric potential w(x).

In Sec. II we give the definitions of the proper phase
functions in each of the above cases. In Sec. III the theorems
essential for the BSE calculation by means of the phase func-
tions are formulated. Section IV contains some concluding
remarks.

(1.6)

1l. TRANSFORMATION TO PHASE FUNCTIONS

(A) Let €, w(x) in Eq. (1.1) have the properties P, w(x)
being a symmetric function of x. Consider the solution
¥, (x,€) of Eq. (1.1) satisfying (1.3a) and perform the PT®

Y4 (x,€) = p4(x,€)c08 2, (x,€),
(2.1)
¥, (x,€) = — p,(x,€)sin z,(x,€).
Here z,(x,€) is the phase function mentioned before.
We require the new functions p,, z, to be continuous
functions of x, p,(x,€) > 0 for x€( — o, ) and according to
(1.3a) we can choose

z2,(0,6)=0. (2.2)

These conditions define the z , (x,€), p,, (x,€) in (2.1) uniquely.
Equations (1.1) and (2.1) then imply

(2.3)

On the other hand, the condition (2.2) defines uniquely
one of the solutions of Eq. (2.3).” It is easy to show that there
is a one-to-one correspondence between the solution ¥, (x,e€)
of Eq. (1.1) satisfying (1.3a) and the solution z,,(x,€) of Eq.
(2.3) satisfying (2.2) (cf. Ref. 8).

(B) Let €, w(x) in Eq. (1.1) have the properties P, w(x)
being a symmetric function of x. Consider the solution
¥p(x,€) of Eq. (1.1) satisfying (1.3b) and perform the PT

Yp(x,€) = ppix,€)sin zz(x,€),

2/, =sin’z, + (€ — wix))cos® z,.

(2.4)
¥p(x.€) = pplx,€)cos z5(x,€).
Again, zz(x,€) is the discussed phase function. We require

Ps» 2y to be continuous functions of x, pp(x,€)>0 for
x€( — o0,00) and according to (1.3b) we can choose
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25(0,€) = 0. (2.5)
These conditions define the functions pp, z, in (2.4) unique-
ly.

It follows from Eqs. (1.1) and (2.4) that

zp = cos’ zz + (€ — wix))sin® zg. (2.6)

Again, there is just one solution z (x,€) of Eq. (2.6) satisfying
(2.5) and there is a one-to-one correspondence between this
zp(x,€) and the solution ¥, (x,€) of Eq. (1.1) satisfying (1.3b).

(C) Let €, w(x) in Eq. (1.1) have the properties P, w(x)
being a nonsymmetric function of x. Consider the solution
Yc(x,€) of Eq. (1.1) satisfying (1.5) and (1.6) and perform the
PT

Yclx,€) = pclx.€)sin z¢(x.€),

(2.7)

Ve (x,€) = pelx,€)cos zo(x,€).
Now, we have to find conditions defining the functions
Pcs Zc in (2.7) uniquely. Again, we require p.(x,€)> 0 for
x€( — 0, ) and that both functions p., z- be continuous
functions of x. It follows from Eq. (2.7) that

tan zq(x,€) = vc(x,€), (2.8)

where v (x,€) is defined by Eq. (1.4) with ¥ = .. According
to the conditions (1.5a) and (1.5b)

lim tan z.(x,e€)

X— — oo

— - et VS _
R AR T
0, ifwl— o)= o,
and there exists x,€( — o0, ) such that
tan zo(x,€) >0, if xe( — o0,%). (2.9b)

Denote lim, , _ z.(x,€) =zo( — ,€) and choose z.(x,¢€)
SO as
ZC( — oo,é‘)
__ [arctan (w( — w)—e€ V3 ifw(— o)< o,
o, ifw(— o) = o0.
(2.10)

Equations (2.7) and (2.10) together with the requirement
Pc > 0 define uniquely pc = pc(x,€), zc = z¢(x,€) as contin-
uous functions of x. It follows from Egs. (1.1) and (2.7) that

(2.11)

It can be proved that there is just one solution z-{x,€) of
Eq. (2.11) satisfying (2.9b) and (2.10) and there can be estab-
lished a one-to-one correspondence between this function
zc-(x,€) and the solution ¥ (x,€) of Eq. (1.1) satisfying (1.5)
and (1.6). The exact proof of this statement is based on a
reconstruction of functions ¥ (x,€), ¥ (x,€) by means of the
z(x,€) satisfying (2.9b), (2.10), and (2.11) (for details see Ref.
8) and on the asymptotic behavior of solutions of Eq. (1.1)
with the considered w(x), €.

z. = cos? z. + (€ — wix))sin’ z.

lli. PHASE FUNCTIONS AND THE BSE PROBLEM

The phase functions z,, zg, zc defined in the previous
section have a number of interesting properties. For in-
stance, z¢(x,€) is a montonically increasing function of the
parameter €€ — oo, W) for any fixed x€( — o0, 00) and the
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same is valid for z, (x,€), z (x,€) if the chosen fixed x is posi-
tive. The proof can be carried out in analogy with that of
Lemma A3 in Ref. 2. Further, the z,,, z,, z. are continuous
functions of the parameter e€(— oo,) for any fixed
x€( — 0, 0). For z,, zp it follows from standard theorems
about continuity of solutions of a differential equation with
respect to the parameter.’ In the case of z¢ it can be proved
employing a procedure analogous to those used in Appendix
A in Ref. 2.

In this section we formulate two theorems which estab-
lish the connection between asymptotic properties of the
functions z,, zy, zc and the BSE problem. It is understood
thatz,, z, z correspond to the aforementioned cases A, B,
C, respectively.

Theorem 1: Let the parameter € and the potential w(x)
in Eq. (1.1) have the properties P. Denote z, 3¢ (,€)

=lim,_ , , z,c)(x.€). Then (1) z,5c)(0,€) is piecewise
continuous and nondecreasing and it holds

(A) z(o0,€)2 —7/2,
(BL(C)

(2) € is a discontinuity point of 2 ¢, ( =0 ,€) iff € is a BSE;
then

Zpic){0,€)20.

lim {ZA(B’C)(oo,f +n)— ZA(B,C)(°°a6 - 77)} =T
70"

(3) Choose some €,€( — o, @). There exists an integer
k>0 such that

(A) —7/2 + kr<z, (0,60} <7/2 + K,
(BL(C)  km<zpc)(0,€0) <[k + 1)m.

Then (A) there are just & BSE less than or equal to €, corre-
sponding to even BSF, (B) there are just & BSE less than or
equal to ¢, corresponding to odd BSF, (C) there are just &
BSE less than or equal to ¢, u

Thus, were the functions z,(0,€) and zz( « ,€), respec-
tively, the function z(co,€), reconstructed in the interval
{ — o0, ) and their discontinuities found, all the BSE less
than i would be determined. However, mostly we are not
able to find the functions z,, z,, z. analytically and in nu-
merical calculations we are not able to reconstruct
Z4p,c)l,€) exactly. The point is that the properties of
Z4s,c)( 0 ,€)are signalled by the behavior of z, ¢, (x,,€) with
a sufficiently large but finite x,,.

Theorem 2: Let w(x), €, in Eq. (1.1) have the properties
P, and x€(0,00) be such that w(x) — €,>0 for xe(X, o).
Choose some x,(¥, ). Then the following statements are
valid.

(1) If
(A)  —7/2 4 nm<z (xp,€)<nm,
(B),(C) nr<z c)(Xo.€0) <[ + Lo

for some integer n>0, then (A) there are just » BSE in the
interval ( — 0, €,) belonging to even BSF, (B) there are just »
BSE in ( — o, €,) belonging to odd BSF, (C) there are just n
BSEin ( — oo, €)-

(2) If

(A) nm<z (xp€0)<(n+ Yy,

B), (C) (n+ %}77' <ZB(C)(x09EO) <+ Um
for some integer n>0, then the same statements as in (1) are
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valid with “n BSE” replaced by “n or (n + 1) BSE.”
(3) The BSE ¢,,, n = 1,2,..., is localized within an inter-
vall, . =(€,. ; €,x ), Where

(A) Z4(xg €, ) = (n — 1),
ZA (xO!?n,xo) = (n - %)7’

(B),(C) ZB(C)(XO’E}:,XO) =(n-— i),

Zp 1C)(x0’?n,x0) =nw.

(4) The length of any interval I, , , n = 1,2,..., decreases
montonically to zero when x,— oo. ]

The proofs of both theorems can be carried out in ana-
logy with those of Lemma 2.7 and Theorem 3.1 in Ref. 2.

1V. SUMMARY AND CONCLUDING REMARKS

{1) The conclusions resulting from Theorem 2 are quite
analogous to those obtained in Ref. 2: Taking x, sufficiently
large and investigating the function z,z ¢, (Xo.€) in the inter-
val ( — o,€,) intervals can be found, any of which contains
just one BSE [corresponding to the BSF of the certain parity
in the cases (A), (B)] smaller than ¢,. Increasing x, one can
make the length of these “BSE intervals” small enough to
obtain the BSE with a desired accuracy.

{2) The phase function z. discussed in the case of a gen-
eral nonsymmetric potential is defined by the boundary con-
dition (2.10) at the point x = — . In practical calculations
one starts with the integration of Eq. (2.11) at some distant
but finite point x, < 0. To do this one has to find the analytic
asymptotic form of z.(x,€) for x— — oo. It can be obtained
by the help of standard theorems about the asymptotic be-
havior of solutions of Eq. (1.1)° and using Eq. (2.8). The start-
ing point x, and the starting value z(x,,€) for the integration
should be then chosen according to the asymptotic formulas
and the intervals of their validity.

(3) To be sure that using the function z_ determined by
an asymptotic starting value one obtains the correct BSE
intervals, one needs the corresponding solutions of Eq. {2.11)
to be stable. Our numerical calculations show a high stability
of these solutions. Theoretical aspects of this problem are
under investigation.

{4) In the case of a symmetric potential one can choose
either the method using the functions z,, z, or that one em-
ploying the function z.. Both methods are of the same effi-
ciency but using the former one need not carry out asympto-
tic estimates.
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APPENDIX A: NUMERICAL RESULTS

To illustrate the efficiency of the presented method for
the BSE calculation we give some numerical results obtained
with it in Tables I and IL

Table I contains lower and upper bounds on BSE for the
potential w(x)
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TABLE I. The bounds on the BSE for the potential w(x} = V,,
0.644 246(}) instead of 554} 2454 .

if x€{ — «,0) and wix) = — 0.1/{x — x,),

if x€(0, 0 ). For simplicity we write, e.g.,

vy = 100, Vy=0.5. V, = 100.
xo= — 1. xo= — . Xo = — 50.

e, 02180230 10-2 0.265 7386 10- 05492423 |

0.218 0230 0.265 7388 0.549 2427

-6 0.582 8286 - 10~° 0.644 246(3) - 1073 0.248 918(2) . 10™3

—& 0.265 0564 - 103 0.283 438(3) - 1073 0.1429734. 1072

—& 0.150 8348 . 10~3 0.158 629(3) - 1072 0.929 031(})- 10~*

— €& 0.972 12(3) - 1074 0.101 215} - 1073 0.652 321(3)- 10~*

— € 0.678 255(3) - 10—* 0.701 46(53) - 10~* 0.483 237(%) - 10~*

— & 0.499 98(35) . 10~* 0.514 62(5) - 10* 0.372351¢3) - 10~*

— € 0.383 764(3) - 10—* 0.393 58(33)- 107* 0.295 699(%) - 10~*

—& 0.303 8163} - 10—+ 0.310717() - 107* 0.240 50(3}- 10~

— € 0.246 478(3) - 10~* 0.251512¢)-107* 0.199 442(3) - 10~*

—€ 0.203 962(3) - 10—* 0.207 7473) - 107

— € 0.171 569() - 10~* 0.174 485(5) - 107

— €53 0.146 32(30) - 107* 0.148 616(3) - 10*

— € 0.126 263(3) - 10~*

— €5 0.110063{%) - 10—*

— € 0.967 9(%3) - 10—°

— € 0.857 85(35) - 10—*

— €5 0.765 53(5,) - 10~

— € 0.687 3(35) - 1073

— €0 0.62057(3/)- 10~

wix) =V, ifxel— »,0), for x€(0,«), / = 0,1,2,..., with the boundary conditions
_ (Al) #(0,6) = P{0,€) = 0.
wix)= —0.1/(x — x;), if x€(0,0),

where ¥, > 0, x, < 0 are constants. Potentials of this form are
interesting for solid state physics. The potential defined by
(A1) belongs to the class (C) discussed in the present paper.
We give the bounds on the BSE in the following three cases:

(1) Vo=100, x,= —1,

(2) V,=0.5,

(3) Vo=100, x,= —50.

As mentioned in Sec. I, the phase function method dis-
cussed in the present paper is an extension of the method
treated in Ref. 2 which applies to a three-dimensional central
problem. In such a case one has to solve the radial SE

d2
(£ 4em
dx

TABLE II. The BSE for the central potential ¥ (r) = — 400 exp( — #?). [ is

the orbital quantum numbser, # is the order of the level for a given /. For

simplicity we write, e.g., 52.143(3]) instead of 331432].

Xo= — 1,

sy V(x)]z//(x,e) =0
X

Present work: the

— €y bounds on the BSE Ref. 11 Ref. 12
— 65y oyaee 94.457 747 55 94,4577
— € 52.143(]) 52.143 5864 52.1436
— €5,  19.966(2) 19.966 318 19.9663
— €3 1.347 34(3) 13473 1.3467
— €y 8.083 3(22) 8.083 33 8.0833
— €5, 0.204 318(5) 0.2049 0.1841
— €5 5.673 18(3) 5.673 144 5.6729
— €,  14.8514() 14.851 4875 14.8515
— €5 1.297 013} 1.296 99 1.2949
3500 J. Math. Phys., Vol. 25, No. 12, December 1984

To find the BSE one can employ the phase function zg (x,e€)
satisfying the equations

Zp = (I + V)cos? zg + (I + 1)~ (€ — V(x))sin? zg,
zx(0,€) =0,
ZR (0,6) =1,

where V' (x) = I (I + 1)/x* + V(x). The bounds on BSE can be
obtained according to the prescription given for the case (B)
discussed in the present paper (for details see, e.g., Refs. 2
and 10). To give comparison with some recently reported
BSE values'"!? we have calculated the bounds on the BSE
for the three-dimensional central problem with the potential

V(x)= — 400 exp( — x?). (A2)

In Table II we show our calculated bounds on the BSE to-
gether with the results given in Refs. 11 and 12 for several
values of I, Except for the case / = 0 we show the bounds on
the highest BSE given in Ref. 11, some of which were consid-
ered unresolved owing to differences between the values pre-
sented in Ref. 11 and in Ref. 12. It should be remarked that
we did not encounter difficulties with energies lying near the
continuum.

APPENDIX B: THEOREMS ABOUT THE ASYMPTOTIC
BEHAVIOR OF SOLUTIONS OF EQ. (1.1)

Theorem B1: Let w(x), € in Eq. {1.1) have the properties
P. Then there exist positive constants «, x,, K, L, and a fun-
damental system of solutions ¥,(x,€), ¥(x,€) of Eq. (1.1) such
that for x > x,

[¥1(x.€)| >K explx x), (B1)
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[alx.)| <L exp( — & x). (B2)

a

The proof of Theorem B1 given below is sketched in Ref. 13

and carried out in Ref. 5. In the rest of this appendix we

assume € to be fixed (having the properties P ) and drop writ-

ing explicitly the e-dependence of the considered functions.
We start with several auxiliary lemmas.

Lemma B1: Let wix), €in Eq. {1.1) have the properties P.
Then there exist « > 0, x,> 0 such that for x > x,

wlx) — €% (B3)

[ ]
The proof follows directly from the properties P.

Lemma B2: Let w(x), € in Eq. (1.1) have the properties P
and x>0, x,> 0 be the same as in Lemma B1. Consider the
solutions u,, u, of Eq. (1.1) such that

uy(xo) = u3(xo) = 1,

(B4)

U] (xXo) = uafxo) = 0.

Then (1) u,, u, are linearly independent; (2) for x > x, the
following inequalities are valid:

u,(x)>cosh «fx — x,),

(B5)

u,(x)> [sinh k(x — x,)]/x.

n

Proof: (1) For the Wronskian of u,, u, it holds
W (u,,u,)=1, which implies the linear independence of u,,
u,.

(2) Consider the solutions g,(x), g,(x) of the equation

g —x’g=0 (B6)
satisfying (B4) with u,—g,, #,—g,. Then

g1(x) = cosh k{x — x,),

(B7)

g2,(x) = (1/k) sinh &(x — x;).

After some simple manipulations with Egs. (1.1) and (B6) for
X > X, one finds

8:(x)/gi(x)>u;(x)/u/(x)>0, (B8)
for x > x,, i = 1,2. Integrating these inequalities and using
(B7) one easily obtains (BS5).

Let us now consider functions F (x}, G (x) defined by the
following relations:

Fx) = u,(x)/u,{x), (B9)

G (x) = uj(x)/u3(x), (B10)
where {u,,u,} is the fundamental system of solutions of Eq.
(1.1) introduced in Lemma B2.

Lemma B3: Let F(x), G(x) be defined by Egs. (B9), (B10).
Then there exists a constant @, 0 < @ < «, such that

lim F{x) = lim G(x)=aq, (B11)
Fix)>a, F'(x)<0, ifx>x,, (B12)
Gix)<a, G'x)>0, ifx>x, (B13)

]

Proof: The relations (B11)—(B13) can be obtained using
therelations (B9) and (B10), by means of which the F (x), G (x)
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are defined, and the properties of the functions u,(x), u,(x)
for x > x,,.

Now we are ready to prove Theorem Bl. A general
solution 9 of Eq. (1.1) can be written in the form

'¢ = Aul + Cuz,

where u,, u, are the same as in Lemma B2 and 4, C are
arbitrary constants. Let us consider solutions #,(x), ¥,(x) of
the form

Ui(x) = A;u,(x) + Cuylx), i=1.2, (B14)
for which
CI/AI # - (1,
(B15)
Cz/Az = —a,

where «a is defined by the relation (B11). Then, it follows
from Lemmas B2 and B3 that ¥,(x), ¥,(x) defined by (B14)
and (B15) satisfy (B1) and (B2).

Consider now the function v(x,e) defined by Eq. (1.4).
We shall prove the following theorem.

Theorem B2: Let w(x), € in Eq. (1.1) have the properties
P and v(x) be defined by Eq. (1.4) for a solution #(x) of Eq.
{1.1). Then there exists lim,_, _ v(x) = v(0) and it holds

v {w)=(w(+ o) —€)7", if w(+ o)< + oo,

{B16)

Uz(oo)=0, if w+ )= + .

For a solution ¢¥(x)=1,(x) of Eq. (1.1) satisfying (B1) the
function v(x) is positive for sufficiently large x. For a solution
(x)=1,(x) satisfying (B2) the function v{x) is negative for
sufficiently large x.

u

In the proof of Theorem B2 we shall need the following
lemma.

Lemma B4: Let y(x,€) be a solution of Eq. (1.1) with
w(x), € having the properties P. Then for sufficiently large x
the derivative /(x) satisfies the condition ¥'(x}#0.

.

Proof: Let x,, u,(x), u,(x) be the same as in Lemma B2.
¥¥(x) can be written in the form

¥'(x) = Aui(x) + Cus(x).

For x > x, it holds #5(x) >0 and the above relation may be
rewritten as

Ylx) = uy(x){4 [u](x)/u}(x)] + C}. (B17)

Then, using (B13) and (B17) one can obtain Lemma B4.
Finally, let us prove Theorem B2. The function v(x) sat-
isfies the equation

vV=1—(w— e (B18)

Using (B18), Lemma B4, and the fact that w{x) is continuous
for sufficiently large x, one can prove (B16) in full analogy
with the proof of Lemma 2.4 in Ref. 2. The last two state-
ments of Theorem B2 can be then obtained by the help of the
relations (B14) and (B15), and Lemmas B2 and B3.
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On charges of massless particles
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We are concerned with the theorem of Weinberg and Witten stating that a massless particle of
helicity |4 | > | cannot be a carrier of a charge of an internal symmetry induced by a Lorentz
covariant current and that for a massless field theory of |2 | > 1 a Lorentz covariant energy
momentum tensor cannot be constructed. We complete the proof of the theorem, as that given by
Weinberg and Witten it is inconclusive. We suggest how to evade the difficulties which arise as a

consequence of this theorem.

PACS numbers: 03.70. + k, 11.10. — z, 11.40.Dw, 11.30.Cp

|. INTRODUCTION

It has been known for a long time that the case of mass-
less particles of higher helicity causes some serious problems
as far as the standard structure of the theory is concerned.
The difficulties in constructing the energy-momentum ten-
sor for massless particles of helicity § were pointed out, e.g.,
as early as in 1966 by Bender and McCoy.' Recently a paper
of Weinberg and Witten? devoted to the problem of charges
of massless particles elicited considerable interest among
physicists and initiated a series of publications on these to-
pics.? This paper is also concerned with the “no go” theorem
of Weinberg and Witten? and consequences following from
it. In this theorem it is asserted that a massless particle of
helicity |4 | >} cannot be a carrier of a charge of an internal
symmetry induced by a Lorentz covariant current and that
for a massless field theory |4 | > 1 a Lorentz covariant energy
momentum tensor cannot be constructed. The proof pre-
sented in Ref. 2 is inconclusive as was pointed out by Sudar-
shan and corroborated by Flato ez al.? in their study; the
arguments presented in Ref. 3, however, neither prove nor
disprove the statement. Our task, in this paper, will be on one
hand to complete the proof of Ref. 2, and on the other hand
to show how to evade the difficulties arising as a conse-
quence of this theorem.

The setting for which the theorem is valid is the stan-
dard relativistically covariant local quantum field theory ina
separable Hilbert space of positive definite metric. In parti-
cular, one assumes the spectral condition to be valid and one
expects the fields as well as the one-particle states to be oper-
ator- or vector-valued distributions, respectively.* We want
to emphasize that the relativistic covariance, locality, posi-
tive definiteness of the metric in the Hilbert space as well as
the existence of the one-particle states are crucial for the
proof.

The theorem is not true for gauge theories with indefin-
ite metric in the Hilbert space; it is, however, plausible that it
is true for the domain of physical states with positive definite
metric (see Kugo®).

Surprisingly enough the theorem does not exclude the
existence of global charges, Lorentz covariant generators of
the internal and geometrical symmetries (translations, Lor-

* Present address: Institute of Theoretical Physics, University of Gottingen,
3400 Gottingen, Federal Republic of Germany. On leave of absence from
the Institute of Theoretical Physics, University of Wroclaw, 50-205 Wro-
claw, Poland.
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entz transformations, dilatations, special conformal trans-
formations, supersymmetric charges). They cannot, how-
ever, be expressed for higher values of the helicity of the
fields concerned as a three-dimensional integral over a time
component of a current j,(x); in other words they are not
so-called Noetherian charges for which the following for-
mula holds true’:

B, =jd3xjm(x); (L.1)

here B, denotes a charge, N stands for any set of Lorentz
(spinor or tensor) indices, and the current jy,(x)
(. =0,1,2,3) is a Poincaré covariant local field which is a
locally conserved quantity, viz.

*fnulx)=0. (1.2)

Of course, they may but do not need to exist. It is known,
e.g., from the investigation of Refs. 6 that in electrodynamics
of photons and electrons the existence of an electric charge
operator entails spontaneous breakdown of the Poincaré
symmetry of the theory as a consequence of the Gaussian
law. This does not, however, apply to free fields for which all
the before-mentioned global charges can be explicitly con-
structed as well-defined operators. Nevertheless, even in the
free field case the theorem prevents the existence of currents
satisfying (1.1) and (1.2).

To resolve this problem the following observations are
in order.

First of all, the procedure proposed in Ref. 2 does not
exclude for higher values of helicity of the fields concerned
with the existence of Lorentz covariant currents which—
being the carriers of a charge—compulsory change the sign
of the helicity while acting upon a one-particle state. This
fact was observed by Sudarshan in his paper.® This effect
seems at first glance to be in contradiction with the Coleman
Mandula “no go” theorem’ in the case of an interacting field
theory. This does not need to be so, however, as (1) the
change of a sign of helicity is related to a discrete symmetry
(space reflection) to which the Coleman Mandula theorem
does not apply; (2) the Coleman Mandula theorem was prov-
en only in case of massive particles; and (3) to preserve the
locality of the fields we have to always combine two terms of
opposite helicity.

What is even more important is that the procedure of
Ref. 2 does not exclude the existence of currents which are
nonlocal or nonlocal and noncovariant with respect to the
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Lorentz transformations. There can exist® operator densi-
ties, sesquilinear in the creation and annihilation operators
of massless particles with almost parallel momenta which
yield finite, nonvanishing contribution when integrated over
three-dimensional x-space. These densities, however, do not
transform under the Lorentz transformation as the time
component of a four-vector and are not local. Another, rath-
er natural, way out closer to the intuitions inherited from
classical physics are currents constructed out of potentials of
the fields rather than out of the fields themselves. It can be
shown that such currents give rise, according to (1.1), to Lor-
entz covariant charges. These currents are also nonlocal al-
though they are locally conserved.

Il. THE METHOD OF WEINBERG AND WITTEN

Following the method proposed by Weinberg and Wit-
ten” we are going to investigate the properties of the matrix
elements

(W psh ), PnXW' (PR ) (2.1)
for® (p — p')* <0, where ¢{p;4) and ¢'( p',h’) denote any
massless one-particle states characterized by momentum p
or p’ (p? =p? =0, po>0, p;>0) and helicity 4 or £’ =0,
+1, + 1,.., respectively, and @, (x) is any translationally
covariant quantum field whose Lorentz transformation
properties are characterized by the tensor, spinor, or tensor—
spinor index N 4, viz.

Ulda)®yx)U(4,a)r =3 (S )5MPyldx +a).  (22)
M

Here U (4,a) is a unitary operator representing in the Hilbert
space the element of the Poincaré group characterized by
AeSL(2,C), ie, A=(%); ad — By =1, a, B,y,6-complex
numbers and ¢=(a,,,,3,,43), a, =, Sy™ = S{4 )™ rep-
resents the same group element A4 in a space of dimension
determined by the tensor character of the field (indicated by
the index V), finally A ; = A (4 ), is the four-dimensional
Lorentz transformation corresponding to A. The reason for
a careful examination of (2.1) is that, as far as the symmetries
are concerned, the physically most interesting quantities like
charges or currents which give rise to these charges have to
exert a nontrivial action upon the one-particle Hilbert space.
Should, e.g., a symmetry leave intact the one-particle states
corresponding to a certain field, this would imply that the
field itself is also invariant under these transformations.’®

To start our considerations let us summarize the trans-
formation properties of the massless one-particle state
¥( p;h )."! Due to positive definite metric of the Hilbert space,
we have

U (4,00 p;h ) = Y(Ap;h Jexplihv} , (2-3)

where v = v(4, p) = v is the so-called Wigner phase. The
term exp{ihv} is a one-dimensional representation of an ele-
ment e(4, p) of the little group E, (two-dimensional Euclid-
ean motion) of the massless Poincaré group representation.
To define e{d, p) we have to first define the Wigner boost
transformation [ p]eSL(2,C). To this aim let us write

aﬁB py EPABESA E; » AyB = 112 ’ (24)

where s,, A = 1,2, transform as spinor components. This is
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possible duetop,; >0,p,5>0,p,; = p,;,andp® =0.In(2.4)

10) (01)
0 __ 1 _
”‘(01’”—10’

7=(; o) 7=l _0)

From the multitude of boost transformations which trans-

form the pseudovector
p=r1001), r>0

or
A 1 0)
Pap=p (0 o/’ £ =2r

into a massless p,, g =0,1,2,3, or p,5 =S, 55, we choose
one which best suits our goal (valid for p, + p;#0) viz.

ST
[p:5=| "_ . (2.5)
25 £
P Isi [$,]
The inverse transformation reads

_10_,
I54]

_sm s s

0

[p]—ch:

(2.6)

i
plsl p
With the help of (2.5) and (2.6) we may define

eld, p)=[Ap]~'4 [ pl€E, (2.7)

which, for our special choice of boosting, reads
1 (3131 p%)
I3, s, 0 5,5

5,=ys, + bs, .

e(A’P) =

where
S,;=as, + Bs,,
It can be shown that its one-dimensional representation
e{ihv)
is linked to the (4,4 )-term (A = A + |h | + 1) of the (24 + 1)-

dimensional triangle matrix representation Z!*'%(e~") of
the inverse of the element e given by (2.7) by

2h
eihvz ( a +AB(S2/S1) ) i (28]
la + B(s2/51)]
Let us examine the transformation properties of the
expression (2.1). We find that in virtue of (2.2) and (2.3)

(A s ). Py (X1 (p'sh))
= (U(A,004( p; ,U A0/ (x)¢/(p'h "))
= exp{ — i(hv(d, p) — h V{4, p')}

D) =

X3S T)nM(Y(A pih )P (AXIYA P1)) - (2.9)

Let us now, following Weinberg and Witten, take as 4
the three-dimensional rotation through the angle 8 around
the axis pointing in the direction q, viz.

o (2] .0 &
A=0%cos = +isin— Y o’/cos¢;, 2.10a
o°cos 5 + i ) > & { )

j=1
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qj . 3 . 172
cosg; = + —, j=123, q0=+(lij) .
° =" " (2.100)

For such a transformation

q=Agq (2.11)
and, in virtue of (2.5)~{2.7) and (2.10}+2.11) we get

QROe—N, | =exp{ +i0/2},

A=h+|h|+1, h= -1} (2.12)

This formula can be extended to an arbitrary half-integer 4
by using (2.8). .

Thus we infer from (2.12) that for 4 = 4 v appearing in
(2.3) or (2.8) coincides up to the sign with the angle of rota-
tion B, 8= + v(;i,q). Again following Weinberg and Wit-
ten we may choose a special Lorentz frame of reference in
which the momenta appearing in (2.9) satisfy the relation

p+p =0, po+p;=2p|. (2.13)

We may also choose as a Lorentz transformation in (2.9) the
transformation 4 given by (2.10) taken for q = p; then

O=vd,p)= —v4,p). (2.14)
Moreover, due to (2.11)
Ap=p, Ap =p. (2.15)

Taking into account (2.13)—2.15) we get from the relation
(2.9) that

n(pp'hh7)
=exp{ — ik + 710} 3 (8 WPy (pp k),
M
(2.16)
where we used the shorthand notation
1

D, (x) is a spinor field and |h+A'[#],
a vector field and |A+A'|#0 or 1,
a Rarita-Schwinger field and |k + A'|#} or 3,

a second rank tensor field and |4+ A'|#0 or 1

We list here the main results shifting most of the computa-
tions to the Appendix.

Weinberg and Witten claim that (3.1) or {3.3) imply the
vanishing of these matrix elements also for (p — p’)* = 0 by
continuity. Unfortunately, their statement is incorrect as the
continuity with respect to the particle momenta cannot be
proven, which was pointed out by Sudarshan and Flato et
al.* What follows from (3.1) and (3.3) for sure is that

@ (pp'shh') = glp,p';h,h \DS(n,n’), (3.4)
where n and n’ are unit vectors pointing in the direction p
and p’, respectively. & (n,n’) denotes the delta-function on the
unit sphere and D is a polynomial in the angle derivatives of n
on the sphere. This expression when multiplied by
exp{i( p — p’)} and integrated® over x may yield a physically
reasonable result. A neat example® is

(Po“’P('J)z

(Popt)? S(n,n')e™ ¥ =P pe=|p| .
o) 40

(3.5)

3505 J. Math. Phys., Vol. 25, No. 12, December 1984

(W Psh Py (X1 (P'sh =Py pp'shih e~ (2.17)
Formula (2.16) is the main object of our investigation. In the
next section we shall examine (2.16) for different kinds of
fields and discuss conclusions drawn from it. In particular,
we shall give the proof of the theorem of Weinberg and Wit-
ten? somewhat extended by us. The crucial point will be that
the right-hand side of (2.16) depends on © while the left-hand
side does not.

lil. PROOF OF THE THEOREM OF WEINBERG AND
WITTEN

Let us examine Eq. (2.16) and the conclusions resulting
from it.

The simplest case is when field @, (x) is a scalar field,
1.e.,

Py (x)=6¢ (x] .
For this case Eq. (2.16) reduces to

P (ppshh’)=expl —ilh +h"\O @ (ppihth’),
which implies for any Lorentz frame of reference
&(ppihh’)=0 for |h+h'|>0 and (p—p)f <0,

(3.1)

in particular,
@ (ppihh)=0 for |A|>0 and (p—p')*<0. (3.2)
Forh + h' = O0andk #0,theexpression® ( p;p’,h, — h )does
not need to vanish. This means that there are scalar fields
which may change the sign of helicity when applied to a one-
particle state; notice that this set of fields is not empty.

In a similar way as in the case of scalar fields, it follows

from (2.16) that @ ( p,p’,h,h ') defined by (2.17) vanishes for
(p —p')* <0, where

or 2. (3.3)
[
In view of the relation
lim | 4 3xf(ﬂ) o~ xp—p) E’_"_:p_"’l Sn,n’)
R R 2po p§
= 2mf(0)5(p — P') (3.6)

this expression leads to a ““‘charge” whose kernel on the one-
particle space is given by

2045(p — ') -

This is what one would expect from a genuine generator of
an internal symmetry.

Notice, however, that (3.5) does not transform under
Lorentz transformations like the time component of a four-
vector (as required by the assertion of Weinberg and Witten)
butastheu = v = p = Ocomponent of arank 3tensor @,,, .
This “wrong” connection between the transformation prop-
erties of charges and currents leading to form factors of the
type (3.4) is a quite general feature. To make this plain let us
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discuss the case where 4/ = /' and D = 1 in (3.4). It follows
from the scale invariance of the Wigner phases [cf. relation
(2.8)] and the fact that

1

PoPo

is a Lorentz-invariant kernel that these form factors can be
represented by

(U Dk, Py, WP ) = Tw,(pA)- (1= A)1 =271

X (6 (m,n')/po pg) - €7 ~F1 . (3.7)
Here A = pg/poand Ty, ( p,§ ) is (for fixed { ) a covariant ten-
sor satisfying the continuity equation p“T, (p,§) = 0. Us-
ing relation (3.6) we thus obtain for the matrix elements of
the corresponding charge the expression

(W p:h ), BNy p' k) = 27/po) - Trio( 1) - 20o8(D — P') -

(3.8)
But (1/p3)Tw.( p,1) is clearly not a Lorentz-covariant tensor
of type N. The generalization of this argument to the case
D #1 is technically tedious but ideologically straightfor-
ward. So we arrive at the following, somewhat extended ver-
sion of the theorem of Weinberg and Witten.

Theorem: A massless particle of helicity 4, |k |
>4{j+ k), cannot be a carrier of a Poincaré covariant
charge induced by a covariant current @ *)(x)in a way indi-
cated in (1.1), wherejand k = 0,4,1,... , indicate the transfor-
mation character of the field with respect to the Lorentz
group.

Let us remark'? that currents leading to form factors of
the singular type (3.4} cannot be local. In local field theory it
can be shown that any charge B,, which is obtained® from a
local, covariant current @y, is covariant. Assuming that a
dense set of single particle states is in the domain'® of B, this
fact is, as we have seen, not compatible with a behavior of the
currents as in {3.4). A more direct way of seeing that these
currents are dislocalized is the following one: If one replaces
Jfin relation (3.6} by a test function which is not spherically
symmetric, then relation (3.6) no longer holds. Therefore,
the matrix elements

(Y100 s Pro (X, fr)¥ioc)
cannot be rapidly decreasing if |x| tends to infinity, unless
they are identically zero. This leads to the following result
under the above mild domain assumptions.

Corollary: In a local field theory one gets under the as-
sumptions of the previous theorem

(@ ph), P X psh ) =0.

Thus the “continuity assumption” of Weinberg and Witten
is a consequence of locality.

These results seem to be at first glance extremely re-
strictive and strange, as they hold true for each field irrespec-
tively of whether it interacts or not. On second thought,
however, we conclude that the situation is not so dramatic;
we are going to make things clearer in Sec. V.

é(n,n’)

IV. OTHER CONCLUSIONS

The theorem does not exclude the existence of nonlocal
fields whose matrix elements (3.4) are concentrated on the
light cone ( p — p’)* = 0. In particular, all fields which satisfy
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([ [@x(hPs |Ps,]-Ps,] =0,

A; =0,1,2,3, s — finite, integer >0 4.1)

may have nonvanishing matrix elements in the close neigh-
borhood of (p — p’)* = 0. The link between (3.4) and (4.1) is
provided by the formula

(1/nl)x" 3"8(x) = ( — 1)"8(x) .

Every generator of an internal symmetry (i.e., a Poincaré
invariant operator), generators of translations P,, Lorentz
generators

M, (x)= e"P"MWe*”’" =M, —x,P, +x,P

VT M,
generator of dilations

D(x)=D—x'P,,
and special conformal transformations

K, (x)=K, —2(x,D+x*M,; )+ (2x,x*P, — x°P,)
as well as the generators of the supersymmetry of the first
and second kind, @5, Q 7 and S, S 5, respectively, fall into
this class. According to O’Reifeartaigh’s theorem,’* every
generator of a group of finite order satisfies (4.1) provided we
have one-particle states in the theory.

For |h+h'| =1, nontrivial spinor and Rarita—
Schwinger fields @, (x) may exist; we call a field nontrivial
when it does not satisfy relations like (3.4). Even then the
spinor field @, (x) = @ !> (x) has to satisfy the subsidiary
conditions

D, (ppih’) =0 for h+h' = — |
and
p’AB¢A(P’P’§h’h 1'=0 for h+h'=], (4.2b)

Notice that these are not Weyl equations. Incidentally, rela-
tions (4.2) prevent the locally conserved current

jCAB(x)EEAB ¢C(x) s e=io” ’ (43)

to give rise to a supersymmetric charge. The argument is
based upon the fact that local conservation of (4.3) implies
that @ (x) satisfies the Weyl equation

(p*" —p )P, =0. (4.4)
More details can be found in the Appendix. Also the current

Jeapx) = 345 Pclx)
cannot be used as a supersymmetric current. Of course, the
case where @, is a free field"” is trivially excluded.

The Rarita—Schwinger field ¢ '""/?(x) [or ¢ V%"(x)] is
subject to similar restrictive conditions as (4.2). In the latter
case, the supersymmetric charge induced by a current can be
carried only by particles of # =0, 4+ ] or + 1; this follows
from the observations that the supersymmetric charge act-
ing on a one-particle state changes its helicity by 4+ 1. For
k> 1, only global supersymmetric generators, which cannot
be presented in the form (1.1), may exist.

For |h + h'| = 1, the vector field ¢ 45>'/? = %3 ¥, has
to be necessarily locally conserved when applied in the one-
particle Hilbert space.

Let us finally look at the second rank tensor field ¢ {,: ).
= 0%:0pp T, and concentrate upon the most interesting
caseh=h'= + 1.Then, @, (pp, + 1, + 1)=&, isnec-
essarily locally conserved and traceless, viz.

(4.2a)
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(p—pY®,=(p—p), =0,

®* =0 (4.5)

If @, is skew symmetric then &, and its dual 5W
= (i/2) ,‘Md”"1 satisfy all Maxwell equations and, conse-
quently, the d’Alembert equation.

If D, is skew symmetric and, in addition, self- or anti-
self-dual, viz.

&uv = i va »

then @, = 0. This was to be expected from the consider-
ations of the vector case; there we showed that @ }{>"/? =0
for |A | >1; this should imply @’ = @0y =0 for |h | >}
too.

The most interesting case of a symmetric tensor 7, is
the case of the energy-momentum tensor S,,. This tensor
has to be locally conserved and can be made symmetric.
However, not always can one remodel it so that its trace
vanishes. If the examined field theory is dilatationally covar-
iant then either the fields have canonical dimensions and in
consequence of that are free massless fields or the dimension
is anomalous and we have to do with interacting fields
which, however, do not admit particle interpretation.'s In
our presentation, the existence of massless one-particle
states is explicitly assumed. This implies either a free, dilata-
tionally covariant, massless field theory or a theory of dilata-
tionally noncovariant interacting fields which admit mass-
less particle interpretation. In the first case, the
energy-momentum tensor can be made traceless. In the lat-
ter case, the dilatation current

D, (x)=x"S,,,(x) (4.6)
is no longer locally conserved and
S*,(x)=9*D,(x)#0.
In our investigation we are interested in matrix elements
(W p:h).S,, O (PR ),

where ¥ p;h ) are massless one-particle states; in this case we
may always find such §,,, that (4.5) holds.

Taking into account the considerations presented
above, the following problem arises. Since for the massiess
particles with |4 | > 1 an energy-momentum tensor cannot be
constructed this implies that standard dilational, conformal
as well as Lorentz transformation currents also do not exist.
The standard dilational current is given by (4.6), the confor-
mal one reads

K. [x) = xS, (x) — 2x,x*S,,(x) ,

where S,,, is the locally conserved, symmetric and traceless
energy-momentum tensor.

We are going to show in the next section how to solve
this dilemma.

V. HOW TO EVADE THE DIFFICULTIES CREATED BY
THE THEOREM OF WEINBERG AND WITTEN

(i) The following example shows that there can exist
local, Lorentz covariant, Hermitian currents which preserve
the absolute value of the helicity but not the helicity itself.
This fact was noticed earlier by Sudarshan.?
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Let us examine the current.

Jalx) = B{F "0, F J) — O, F*)F J:(x)
where F,, = — F,, is a free local massless tensor field; in
addition we require that F,, is neither self- or antiself-dual
andF,, #(F,,)*". In the spinor notation of van der Waerden
we have

Fipen=04:0pp F,, =S p€cp +Ach€asp >
with

Siup#0, Aep#0, (Sep)" #Aus .
As F, is assumed to be a free local massless field, S, ; as well
as A4, can be separated into two Lorentz covariant parts,
ViZ.

Sup =S —h)+SGHEN, h=1,

Aup = (AU5(— )" +A8h(h),
where SL(—h), S%L(h), 475 — k), and 4 Z,(h ) are linear
in the creation operators It is easy to see that the nonvanish-
ing contribution obtained from

(W 2ok JiF gpen( FHYPP( plsh )
arises from terms

S(l)( —h )(A (2)(h ))+ LA (1)( —h )(S(z)(h ))+ ,
A (2)(h )S(l)( —h )+ ,
and S@(h )4 Y — h))*, ie., terms withh = — A",

(ii} Another solution to the dilemma is to make use of
currents which are noncovariant with respect to the Lorentz
transformations. Besides the expressions of type (3.4) dis-
cussed before, there exists currents constructed out of poten-
tials of the fields rather than out of the fields themselves as
customary in the traditional formalism of classical physics.
These currents are locally conserved and give rise to Lorentz
covariant charges which do not change momentum and heli-
city of a one-particle state; these currents are, however, non-
local.

In a theory of a free local massless skew symmetric and
self-dual field F,, the nonlocal and Lorentz noncovariant

current
Jilx) =44 0,4 ) — (34 YW | }:(x)
yields a bona fide scalar charge. Here'’
Foy =304, i,j=123,
F,=0,4,—34,,
d4, =0, A,=0, CU4, =0.

A similar procedure can be applied in the theory of a
free local massless self-dual field R,,,, of helicity 2 in con-
structing the energy-momentum tensor. The field R,,,,, is
linked to the Riemannian curvature tensor and to the linear-
ized Einstein gravitation.'® The nonlocal and Lorentz non-
covariant energy-momentum tensor reads

=:{8,h* 3, (hs)" + . (h**)* 3,h,;
- va 3¢Th o aahxll ] ‘(x) 1

where 7,, = diag(l, — 1, — 1, — 1). This energy-momen-
tum tensor yields proper Lorentz covariant generators of the
translations and other symmetries linked to the energy mo-
mentum tensor. Here
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leyv = - ax (a;t h/{v - avhll,u) + a/l (ay, hKV - avhxp) 4

The potentials 4,, are restricted by the following con-
straints:

By = by
i€ 1z PG — R )

= 8,(0%h T — &k ) — 3,(0%h,° — &h,"),
Fh,, =13,h",
Ok, =0,
hoo = hoy = 0.

The observations made above show that in field theory
of massless particles we are forced to introduce into the the-
ory Lorentz noncovariant, gauge-dependent quantities like
potentials in electromagnetism or metric tensor in linearized
Einstein gravitation to preserve the notion of currents giving
rise to conserved Lorentz covariant quantities. This observa-
tion is of a general nature as for each massless field of higher-
tensor character we may, in virtue of the Bianchi identities
and the inverse of the Poincaré lemma, introduce potentials.
These potentials transform under the Lorentz transforma-
tion noncovariantly, in particular the polarization factor ac-
quires a phase exp{ihv(4, p)}. The current is constructed in
such a way that it is a sesquilinear form in the potential.
When we integrate this current over x the phases of the two
potential operators cancel each other and we get a Lorentz
covariant global change.

(de Donder gauge),
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APPENDIX

We give here some more information about the cases of
spinor, vector and tensor fields.

({) Case of spinor field: ®y(x)=®4*" or & H?
(B =1,2).

According to (2.16) in the special Lorentz frame of ref-
erence and for (p — p')* <0 we have [@; stands here for
@020 p.p'shh’) etc.]

@, =exp{ —ilh+h"0 )[4 7"}, Pc ,

@, =exp{ —ilh+h')2}{d "}, 5P:
which after taking into account (2.10) and arbitrariness of
the angle 8 reduce to (4.2) and complex conjugate of it or
yield @, = @5 = 0 otherwise.

3508 J. Math. Phys., Vol. 25, No. 12, December 1984

The relations (4.2) are Lorentz covariant and should
hold in any frame of reference.

(i) Current € ;3 P (x): Weprovefor h + h’ = | that the
current (4.3) does not give rise to a supersymmetric charge.
In this case @, satisfies simultaneously (4.2b) and (4.4). The
solution to (4.2b} is

b, =A(pp P
and (4.4) implies

PP, =2 (pplp* Pl =0 (A1)
for any choice of p and p’ when (p — p')* <O0. In the special
frame of reference, p, =p, p= — p’ (A1) reads

A(pP' P2l P22 +P11) =0,

A(pp' P P2 +P1) =05
which should be valid for any choice of p. Therefore,
A(p.p') = 0 consequently in any frame of reference

&, =0 for (p—p)<0
as has to be shown.

(@) Case of wvector field: Dylx)=V,(x)
= J(0,,)*?¢ 45>'"?. This is the case considered in Ref. 2, ex-

cept that we are not going to assume at the start that itis a
current. According to (2.16) we have [®, stands for

D, (pp'shh')]
(po — e—i1h+h')6¢0 ,
(A2)

3
¢k=e~i(h+h')92Rk—ll¢I’ k=1,2,3,
I=1
where R is the three-dimensional rotation matrix corre-
sponding to (2.10) or
D, = e“""*”"e{cos ed, + (1 —cos 9)1!21!i D,
Do Po

+ Sin 96k1m ﬂ ¢m]

Do

_ —ihrhoPr P g

Po Po
+%e_i(h+h'—1'9 l¢k _p_kp_l¢1 _ieklm £I_¢m]
Po Po Po
I [qbk PP g v it ﬂcpm] .
Po Po Po

The only admissible casesare s + 2’ =0, + 1and — 1. For
h + k'’ =0 it follows from (A2} that @, is arbitrary and

D, =ap, .
If we require in addition that @, is a current we have in this
special Lorentz frame of reference

PP =apipi =0,
which implies for an arbitrary frame of reference that @, is
symmetric with respect to the interchange of p and p’, viz.

(D# ~P. +P ;’t
and therefore, is not a gradient of a scalar.

For h 4+ k' = + 1from (A2) follows @, =0 (A3a)
¢k = $ ieklm(pl/p0)¢m . (A3b)
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From (A3) follows immediately that @, is locally conserved.
(p* —p*)P, = —2p, P, =0.

This conclusion is then true for any frame of reference. No-

tice that formula (A 3b) does not imply that @, = 0, since P,

is a complex number. With the notation

&, =X, +iY,, X, =X,, Y. =Y,
we have

X1Yip
and

XX =Y.7,.

For |h+h’'|>1and (p —p'f’>0wehave &, =0.

(i) Case of tensor field: Py(x)=T,,(x)
=40, €0, )PP 1)) In case of tensor fields the matrix
elements for ( p — p')* < 0 can be different from zero only if
h+h'=0, +1or + 2. Let us concentrate upon the most
interestingcaseh =h'= + 1.Forh =h'= lwehave [®,,
stands for @,,(p,p',1,1)]

@ =0, (Ada)
Py =Py =0, (A4b)
@, = (68" — i8*™ cos ¢,€™
— i6™ cos ¢, €™ — cos @, cos ¢, e™
— cos ¢, cos ¢, cos &, cos §,)P,... , (Adc)
0 = (56" + i85 cos ¢,e™
+ i6™ cos ¢,e™* — cos @, cos B, e™
— cos ¢, cos ¢, cos &, cos ¢,)DP,.. , (Add)
0= (5% cos ¢, cos ¢, + 6™ cos @, cos $,,
—2cos ¢, cos @, cos ¢, cos )P, , {Ade)
0 = (cos &, cos ¢, cos ¢, ™
+ cos ¢, cos ¢, cos &, €™ )P, , (A4f)
D, = — (cos @, cos @, cos @,, cos P,
+ cos ¢, cos €™ €™ )P, ., (Adg)
P =—9,

and if it is either self- or antiself-dual, i.e.,

D, = +(i/2)€,,u0",
then

Dy = t i€, P =0.

Turning toan arbitrary tensor 7, let us subtract (A4d)
from (A4c), then

Py = — (i/2)c08 ¢, (€™ by, + €75P,) .
From (A4g) follows

cos ¢, cos ¢, P, = —cos @, cos ¢, P, =0.
Using this relation as well as (A4e), viz.

cos @, cos ¢, Dy, +cos g, cos ¢, P, =0,
we get

cos ¢, P, =cos g, P, =0. (AS5)
Then (A4g) yields

D, = — cos §, cos p, €™ e™D,,. .
From that follows

&, =0. (A6)
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It is easy to see that (AS) together with (A4a) and (A4b)
means

(p '—p’y‘¢;¢v = (P _pl)v¢,uv =0 (A7)
and (A6)
o+, =0 (A8)

Thus, @, has to be locally conserved and traceless.
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All the Zeldovich fluids of imbedding class one with nonvanishing Weyl tensor have been
obtained by solving equations of continuity and equations of motion. All of them are found to be
irrotational and therefore can be termed as self-gravitating fluids with pressure equal to energy

density.
PACS numbers: 04.20.Jb, 95.30.5f, 98.80.Dr

i. INTRODUCTION

Barnes' has shown that a class one perfect fluid pos-
sesses at least one of the following properties: (i) conformal
flatness, (ii) the flow is geodesic, and (iii) it admits a three-
dimensional group of isometries with two-dimensional
space-like trajectories. All the solutions belonging to (i) and
(ii) have been obtained by Stephani® and Barnes.'> However
the solutions belonging to (iii) with nonvanishing accelera-
tion vector (nongeodesic flow) and nonzero Weyl tensor, are
quite rare. As far as the authors are aware, only one static
solution of this kind is available, which has been discovered
and rediscovered by many authors."**” In the present arti-
cle the authors have obtained all the solutions belonging to
(iii) considering the barotropic equation of state, pressure
equal to energy density. The possible relevance of the equa-
tion of state pressure equal to the energy density has been
discussed by a number of authors®2° since it was first pro-
posed by Zeldovich.® It is said to describe many useful situa-
tions such as radiation, relativistic degenerate Fermi gas,
and ultracondensed baryon matter.”'? If, in addition, its mo-
tion is irrotational, then it has the same stress energy tensor
as that of a zero rest mass scalar field or that of self-gravitat-
ing fluids with pressure equal to energy density.'" Also these
solutions are transformable to the solution of the Brans-
Dicke theory in vacuum.'?

Il. METRIC AND CLASS ONE CONDITIONS

An appropriate metric admitting a three-parameter
group of isometries with the two-dimensional trajectories
r = const and ¢ = const can be expressed as’

ds* = —A(rt)dr* — B(rt)do* + C(rt)dt?, (2.1)
where do” is a two-dimensional metric with constant Gaus-
sian curvature K and can be written as

do* =do*+ fH0)d¢?, (2.2)

where f(6) = sin 6, 6, sinh 8 for K = 1,0, and — 1, respec-
tively. In fact these cases correspond to spherical, plane, and
hyperbolic symmetries, respectively. The metric (2.1} can be
transformed to five simpler metrics using the well-known
transformations®’

ds* = — A(r,t)dr* — P do® + Crt)dt? (2.3)
ds* = — A(rt)dr* — PP do® + 2D (rt)dr dt, (2.4)

* On leave from Moti Lal Nehru Regional Engineering College, Allahabad,
Uttar Pradesh, India.
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ds*= —A(rt)dr —t2do® + Clr,t)dt?, (2.5)
ds’= —t?do® + C(rt)dt?® + 2D (rt)dr dt, (2.6)
ds*= — A(r,t)d — h>do? + C(rt)dt?, (2.7)

where % is a constant.

Now the necessary and sufficient conditions so that a
metric of the type (2.1)+2.7) may be of imbedding class one
are given as?

R1414 = (Rl2l2R3434 - R1224R1334)/R2323’ (28)
provided R,,,, #0, excluding the case when “B ” is merely a
constant and the space-time is always of class one. The nec-
essary part of this result is due to Geonner? and for sphericl
case (K = 1) due to Eiesland.?* The conditions (2.8) can also
be written in terms of the energy momentum tensor in Kar-
markar’s way,” e.g.,
3F* 4+ 87F(4T3 —T) —T3)

+ 647X TT, —T|T3)=0, (2.9)
where

F= —R;/B zfz(g ). (2.10)
Further the Einstein field equations for perfect fluid distri-
bution are given by

Ri — RS, = —(a+ bWy, + b6, = — 87T}, (2.11)
a and b being 8+ times the energy density and pressure, re-
spectively. Here v’ stands for the mean dynamical velocity
vector, i.e., the flow vector.

Now in view of {2.11), the condition {2.9} leads to

(3F —a)(F—b)=0. (2.12)

The vanishing of the first factor gives a space-time with van-
ishing Weyl tensor, while the second factor when equated to
zero gives a space-time with nonvanishing Weyl tensor. In
the next section, the Zeldovich fluids for the later case, i.e.,

F=b, (2.13)
will be determined by considering the alternative metrics
(2.3)-2.7).

1. CLASS ONE ZELDOVICH FLUIDS WITH NONZERO
WEYL TENSOR

Because of (2.11), T'; satisfies a conservation equation of
the type

T;, =0, (3.1)

where a semicolon indicates the covariant derivative. For the
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perfect fluid case (2.11), (3.1) leads to the equation of contin-
uity

av'+a+b)d=0, (3.2)
and to the equation of motion
bv,-v'-vk + (a + b )Uk -_ b,k = 0, (3.3)

where @ (=v’) and v, ( = v, V') are the volume expansion
and the acceleration vector, respectively, and where a com-
ma and a semicolon denote the ordinary and covariant de-
rivatives, respectively.

Case (4 ): The equations (3.2) and (3.3) with reference to
the metric (2.3) and using Eq. (2.13) give rise, for a = b, to

b"_rb + 3b ~0, (3.4)
b rb’ +2b
267 r2b'r + 6b) b _ 2or  5b'
b (4b+ b'r)(b'r + 2b) K—b? 4b+b'r
3’ 2
DU A . 3.5
b’r+2b+ r (-3)

provided b #0. The prime and dot indicate partial deriva-
tives with respect to “»”’ and “t,” respectively. The expres-
sions for unknown metric potentials, flow vectors, and vorti-
city w,, are given as
A=(K—-br)"",
C=b*P[(K—br)b'r+2b)b'r+4b)]~",
vi= —[(b'r+2b)K — b*)/2b]"%,
= [b'r+4b][(K—br2)(b'r+2b) 172
br 2b
v =v* =0, and @,, = 0 (hence implies irrotational flow).
Equation (3.4) is easily integrable and gives
b=¢uy/r, (3.7)
whereu = ¥ G (t), G (¢ )being an arbitrary function. Also ¢ of
(3.7) is further restricted by (3.5) as follows:

[ud +20][K—d]l=a=2C+K?*2 (let) (3.8)

where a and C are aribtrary constants and ¢ =d¢ /du.
Equation (3.8) gives on integration the following expres-

, (3.6)

sion:
log pu*(¢ > — Ko + a/2)
( —E—tan_1 ¢'K/2, for C>0,
JC JC
= lo ¢_K/2_‘/_C, for C<0,
W—C ¢—K/2+v —-C
__K , for C=0.
T s—K/2
(3.9)

Owingto(3.7) and (3.8), the contents of (3.6) can be expressed
in terms of ¢ in a more informative form:

- rG? -1
A=K—-¢)", C=—rlaKk—-9)""'-24], a>0,
aG
g a—2¢<1<—¢)]*/2
2¢ ’
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a_ _aG _ —1,1
vi= ——gla—24K—¢)1" v,

(3.10)

As is clear from (3.9), ¢ is occurring implicity and therefore
the study of the fluid distributions (in general) is not that
straightforward. However some conclusion can still be
drawn, e.g., solutions in plane symmetry (K = 0) and hyper-
bolic symmetry (K = — 1)arenot valid in the present case as
the signature of the metric is disturbed. The signature could
have been preserved provided ¢ < 0. But this implies nega-
tive pressure (or energy density), which violates the energy
condition

T,vv >0
and the Hawking-Penrose conditions?®

[T, — g, T Jvv/ >0. (3.11)

The conditions (3.11) require positiveness of pressure (or en-
ergy density) for the present equation of state. The case with
vanishing ¢ simply imply the flat space as Szekers?’ has
shown that there are no class one vacuum space-times. So
the only valid solutions associated with the metric (2.3) are
spherically symmetric. Some explicit solutions of this type
can be obtained by considering C= — &, — &, — &, — 1
and then solving quadratic, cubic, and biquadratic equations
in ¢ so obtained from the second of (3.9). The equations (3.4)
and (3.5) are not valid for & = 0. Therefore recalculations
with 4 = A (r) give rise the following data as an alternative to
(3.10):

r¥=1v=0.

A=2K, C=r,
v, =0,=0v;=0, v,= Fr,
b=K,2r, K=1,
and nonvanishing acceleration components are given by
b= —1r v,=0.

The volume expansion ¢ and shear o, are zero.

Case (B ): The equation of continuity (3.2) and the equa-
tion of motion (3.3) for the metric (2.5), taking (2.13) into
account for @ = b, can be expressed as

br 3 +bt_ (3.12)
b’ 2b+ bt
' t(2br+6b) . bt
b’ (b+bt)b't+2b) | bt2—K
5 b2

— — + = 0, 3. 1 3

4b+bt br+2b ¢ (3:13)
provided b’ #0. We observe that (3.12) and (3.13) are exactly
parallel to (3.4) and (3.5). The rest of the work for this case,
can be carried out on the same footings as that of preceding
case and we come across the following essential data:

272
B -K) T+ 28], B>0,
v'= — (BF/tF)[B + 24 (6 — K)) ™",
o= B+2¢(¢—K)]|ir2
24 ’
b=¢u)/t? u=tF(r),
F (r) is an arbitrary function,

C=(¢—K)_1, A=

a)ab = 0.

(3.14)
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where ¢ is given by

[u6 + 2416 —K1= —B, B>0. (3.15)
Solution of (3.15) is exactly similar to those in (3.9). Contrary
to case (A), the present case may have valid solutions corre-
sponding to X = 0 (plane symmetric) and X = — 1 (hyper-
bolic) along with the spherically symmetric case (K = 1).
Particular explicit solutions corresponding to K = 4 1 can
be obtained by supposing the same values of the arbitrary
constant as in case (A) (with + sign). However for the plane
symmetric case all the solutions can be obtained explicitly by
putting K = 0 in the second solution of the analogous set and
we get

b=V/(g/t'F* —B/2),
The continuity equation (3.12) and the equation of motion

(3.13) become meaningless for 6" = 0. So fresh calculations
with C = C(¢) give

const g > 0.

A=1 C=(@/t*—K)},
vL=v,=03=0, v,= $(a2/t2_K)—1/2,
b=a%*t*, K=1,0, — 1.

Also the volume expansion ¢, acceleration i, and shear
, are given as

¢ =(2/t)V (@t —K)

0’22=E= _L[ﬁ_[{]l/z_
f? 312
The rest of the shear components are zero.

The metric in this case admits a four parameter group of
isometries with the trajectories ¢ = const (see Ref. 1). The
metric representing the above solution can be transformed
by Tabensky form (for K = 0) (see Ref. 11) as

ds?* = (1/4a*)(dT? —dR? — Tdo?, T=t>andR = 2ar.

Letelier'® has shown that the above metric has singularity at
T = 0 of semi-Kasner class.

(¢4

a

v; = (0,0,0,0),
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of free fall and the conformal causal structure of space-time
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According to the principle of the universality of free fall, the motions of all neutral monopole

particles are governed by one common path structure. This principle does not, however, require
the path structure to be geodesic; that is, the path structure need not be a projective structure. It is
shown that any equation of motion structure (either a curve or a path structure) that has sufficient

microisotropy to be compatible with the conformal causal structure of space-time must be
geodesic and must be unique. Hence, the empirically well-supported principles of conformal
causality and of the universality of free fall together require the existence of a unique Weyl

structure on space-time.

PACS numbers: 04.20.Me, 04.20.Cv, 02.40.Ky

I. INTRODUCTION

The transition from the kinematic to the dynamic anal-
ysis of the motions of bodies in space-time theories has tradi-
tionally been viewed to consist in the determination of a par-
ticular class of standard motions that are the free motions.
The concept of force is then defined in terms of acceleration
relative to the standard of no-acceleration provided by these
free motions. This procedure is meaningful if and only if for
each event of space-time and for every timelike direction at
that event, there exists one and only one standard motion
through that event. From a geometric viewpoint, the deter-
mination of the class of standard motions amounts to the
determination of a path structure for the space-time mani-
fold.

The problem of motion’ concerns the nature of this
transition. The controversy surrounding this problem has
nurtured and given currency to a number of claims concern-
ing the status and meaning of the laws of inertia of the var-
ious space-time theories: the laws (1) are conventional in
character, (2) are definitions, (3) are circular and without
empirical content, and (4) postulate the existence of free par-
ticles or of inertial reference frames.

Those who argue for the conventional and/or defini-
tional character of the laws mainly on epistemic grounds
point out that the laws do not supply independent criteria of
what is to count as force-free or natural motion. The only
way of knowing when no forces act on a body is that it moves
as a free particle along the geodesics of space-time. But how,
without already knowing the geodesics {or the projective
structure) of space-time, is it possible to determine which
particles are free and which are not? And of course, to deter-
mine the projective structure of space-time it is necessary to
use free particles. The circularity, they argue, cannot be
avoided.

Others have tried to define a free particle with respect to
an inertial frame as a particle the motions of which satisfy
the equation d x®/dt ? = 0 in that frame. But how is one to
determine what an inertial frame is? If an inertial frame is to
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be characterized as a frame in which the motion of a free
particle would satisfy the equation d 2x%/dt? = 0, then the
definition is obviously circular. Hence, Newton’s first law is
interpreted by some as the existence claim: there exist phys-
ical inertial frames in which the motions of free particles
would be governed by the equation d 2x*/dt 2 = 0. There re-
mains, however, the lack of noncircular physical criteria for
identifying these frames.

Those who argue for the conventional character of the
laws of inertia from ontological considerations concerning
the nature of space-time structure and/or for their relationa-
list character from a Leibnizian-Machian view of motion
(the view according to which relative motion must be under-
stood as relative motion of bodies with respect to each other
or with respect to material reference frames) advance the
thesis that what counts as a standard of no-acceleration or
free motion is not dictated by a physically real and causally
efficacious inertial structure of space-time.

In addition to its importance for the foundations of me-
chanics, the problem concerning free or natural motion has
recently become a pressing issue within the particular con-
text of the constructive axiomatics for the general theory of
relativity (GTR). One of the constructive axioms employed
by Ehlers, Pirani, and Schild,” the projective axiom, is a
statement of the infinitesimal version of the law of inertia,
the law of free (fall) motion which contains Newton’s first
law of motion as a special case in the absence of gravitation.
The problem is how to introduce a class of preferred mo-
tions, that is, how to characterize that particular path struc-
ture that would govern the motions of free particles (neutral,
spherically symmetric nonrotating test bodies) while avoid-
ing the circularity problem surrounding the notion of a free
particle.?

In previous work,** we have solved these difficulties.
Our solution provides noncircular, empirical procedures for
the identification of monopoles, for the separation of mono-
pole particles into distinct classes each of which corresponds
to a particular path structure, for the measurement of these
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path structures, and for the testing of a given path structure
for geodesicity. We have also appropriately reformulated the
laws of motion. This reformation is also briefly indicated
below in Sec. II.

In this paper, we prove that in a world in which causal
relations are determined by a conformal structure, the only
possible solution to the problem of motion is the solution we
have given; that is, the standard, free motions are deter-
mined by a physically real projective structure and this pro-
jective structure must be unique.

The nature and significance of the results of this paper
are discussed in detail in Sec. II. Section III is devoted to a
discussion of curve and path structures in general, of the
relationship between them, and of the condition that any
such field that governs the motions of neutral monopoles
must satisfy to be compatible with the special theory of rela-
tivity (STR). In Sec. IV, itis proved that any curve structure
that satisfies this compatibility condition must be geodesic.
In Sec. V, the corresponding result for path structures is
proved. Finally, in Sec. V1, it is proved that unless the projec-
tive structure of space-time is unique, there exists a subspace
structure in some region of space-time.

Il. IMPLICATIONS FOR GEOMETRIC REALISM

In this section, we discuss the implications that the
theorems proved below have for the foundations of the gen-
eral theory of relativity (GTR).

First, consider a world without fields, a space-time
equipped with only a differential structure. In such a world,
it is possible to define curves and paths (unparametrized
curves) and their elements. However, there are no preferred
curves or paths, and the motion of material bodies is not
predictable. The simplest type of particles are monopole or
unstructured particles. Experience indicates that the (four-
or three-) acceleration of a massive body cannot be freely
chosen. In particular, a monopole particle is characterized
by the fact that at any event on its world line, its {four- or
three-) velocity at that event is sufficient to determine its
(four- or three-) acceleration at that event. That there must
exist additional, postdifferential structure to account for this
phenomenon is evident from the inhomogeneous nature of
the transformation laws for four-acceleration (3.3) and for
three-acceleration (3.4). We are led to the following princi-
ple.

The predictability of motion (PM ): Corresponding to ev-
ery type of massive monopole, there exists either an accelera-
tion field or a directing field which governs the motion of
that type of particle. Directing fields correspond to a special
subclass of acceleration fields. The specific relationship is
detailed below in Sec. IIT E.

It is evident that many different acceleration fields
might exist and that the set of actually existing acceleration
(or directing) fields need not exhibit any pattern of relation-
ships. However, the well-known example of the set of direct-
ing fields that govern the motions of monopoles which have
various electromagnetic charge to mass ratios suggests that
the contrary is the case. The notion of charge-to-mass ratios
may be characterized in the following way.®
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Definition of charge to mass ratios: Suppose that the
acceleration fields that are known to exist on space-time con-
stitute a parametrized family of the form

A7) =V ) + Y KL x0), (2.1)
where U is a specific acceleration field, the K, are four-force
fields, and the A, are scalars that are independent of the
variables x’ and ¥/ . The parameters A, are called charge-to-
mass ratios. In case every acceleration field in the family
corresponds to a directing field, the directing fields form a
parameterized family of the form

ExET) = WAxET) + X A Folx'69), (2.2)
where W is the directing field and the F, are three-force
fields corresponding to the fields U and K, . The acceleration
field U (or the directing field W) determines the common
zero for the charge-to-mass parameters A, and governs the
motions of neutral monopoles. Note that by definition,
short-range forces are essentially zero except in a very small
region surrounding a source; consequently, only charges,
such as the electromagnetic charge, which couple to long-
range forces are of interest in the present context.

A microsymmetry’ of an acceleration field or of a di-
recting field at an event p is a local diffeomorphism of a
neighborhood of p which leaves p fixed and preserves the
field at the event p. The set of microsymmetries at p forms
the microsymmetry group at p. If the motions of monopoles
are to be in accord with the principles of STR then at every
event p of space-time, the field that governs the motions of
neutral monopoles must be micro-Lorentz invariant and the
force fields that couple to the various charges must be micro-
Lorentz covariant. Thus at each event p, the first-order part
of the microsymmetry group of the field governing the mo-
tions of neutral monopoles must contain a subgroup that is
isomorphic to the Lorentz group. The theorems presented in
Sec. IV establish that any acceleration field that satisfies this
condition of compatibility with STR must be geodesic. The
corresponding theorems for directing fields are presented in
Sec. V.

An example of a one-parameter family of acceleration
fields which does not correspond to a one-parameter family
of directing fields is given by

Asn) = — Lol + AFjxr . (2.3)
This family should be contrasted with the family (3.22)
which corresponds to the directing field family (3.23), The
acceleration field (2.3) gives rise to a directing field only for
A = 0. However, all acceleration fields that are presently
known correspond to directing fields. Moreover, the three-
acceleration at a given event for a given three-velocity is the
same for all neutral monopoles regardless of mass and re-
gardless of material composition. Since the only long-range
charge known to exist is the electromagnetic charge, these
observations can be formulated as follows.

The universality of free fall (UFF ). The set of all actually
existing equation-of-motion structures for massive mono-
poles constitutes a one-parameter family of directing fields
of the form
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ZIxET) = WARET) +(Q/m) Fox'E 1),

where W is a specific directing field and @ /m is the electro-
magnetic charge-to-mass ratio. Since this principle asserts
that gravitational charges do not exist, it has been called the
principle of equivalence of gravitational and inertial mass or
the weak principle of equivalence. However, the weak prin-
ciple of equivalence is frequently construed to require not
only the uniqueness of the directing field W which governs
the motions of neutral monopoles but also its geodesicity.®
This much stronger statement is formulated as the following
principle.

The geodesicity of free fall (GFF ): The directing field W
that governs the motions of all neutral monopoles is geodes-
ic. The principle UFF and the compatibility of the directing
field W with STR jointly entail by the theorems of Sec. V the
principle GFF.

In our previous work, we have shown that directing
fields can be measured given only access to the differential
structure of space-time, that is, given only the ability to set
up local coordinate systems and to track material bodies
with respect to such coordinate systems. In contrast, accel-
eration fields can only be measured by much more compli-
cated and indirect means that require the prior measurement
of other geometric structure fields.® The direct measurability
of directing fields and the principles UFF and GFF account
for the fact that directing fields play a much more prominent
role in the foundations of GTR than acceleration fields. For
this reason, separate proofs have been provided in Sec. V for
the theorems concerning directing fields even though it is
possible from a purely mathematical viewpoint to rearrange
the exposition so that these results follow as corollaries of the
corresponding theorems for acceleration fields presented in
Sec. IV.

The principles UFF and GFF are empirically testable
given access only to the differential structure of space-time
because directing fields can be measured at least in principle
on that basis alone. The principle UFF is falsified if two
independent differences of three distinct directing fields are
not constant multiples of each other. The principle GFF is
falsified unless for every directing field = §(x",£ 7) there exists

(2.4)

some constant multiple of the difference field
k(E%:(x'¢§) — Z5,(x"£ 7)) such that
SIET) +h(E L KET) - F5ET) (2.5)

is geodesic. Note that a directing field can be tested for geo-
desicity simply by computing derivatives with respect to the
variables £ {. Such direct and elementary tests are difficult to
perform and consequently have not yet been carried out.
However, the principle UFF has been tested to very high
precision by indirect experiments of the Eétvosz type.'°
Also, given the theorems proved in this paper, the various
experimental tests of STR are indirect tests of the principle
GFF.

Consider a world equipped with a two-parameter fam-
ily of acceleration fields of the form

A3 = — iy +AS (it

@/ m g XMy, (2.6)
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where S}, (x') is a tensor field. The parameter might, for ex-
ample, be a gravitational charge-to-mass ratio. All of the
fields with zero electromagnetic charge-to-mass ratio are ge-
odesic. There is no reason to identify any one of them as the
field which governs free fall; that is, there is no unique zero
for the parameter 4. However, in Sec. VI, it is shown that
such a state of affairs is in conflict with STR. First, any geo-
desic directing field (or projective structure) must satisfy a
second-order condition of compatibility with the conformal
causal structure of space-time for otherwise the material bo-
dies governed by the directing field can break the light bar-
rier. Moreover, if two projective structures exist in a region
of space-time which differ throughout that region, then a
nonvanishing covector field, and hence a subspace structure,
is defined throughout the region. Consequently, the projec-
tive structure of space-time must be unique, and hence there
exists a unique Weyl structure on space-time determined by
the conformal and projective structures of space-time."!

In summary, the empirically well-supported principle
UFF asserts the existence of a unique directing field which
governs the motions of neutral monopoles. The requirement
that this field possess a sufficient degree of microisotropy to
be compatible with STR forces this field to be geodesic. The
requirement that massive bodies not break the light barrier
ensures that this projective structure is compatible with the
conformal causal structure of space-time and that these
structures determine a Weyl structure. The additional re-
quirement that no subspace structure exist in any region of
space-time entails the uniqueness of the projective structure
and hence of the Weyl structure. Furthermore, it is not possi-
ble to avoid the requirement of geodesicity of free motion by
appealing to more general types of acceleration fields that do
not give rise to directing fields.

These results motivate the following reformulation of
Newton’s laws of motion which we have discussed at length
elsewhere.'?

The law of inertia: There exists on space-time a unique
projective structure /1 (or equivalently, a unique geodesic
directing field /7). Free motion is defined with reference to
the projective structure /7 as follows.

Definition of free motion: A possible or actual material
body is in a state of free motion during any part of its history
just in case the corresponding segment of its world line path
is a solution path of the differential equation determined by
the unique projective structure of space-time. The law of
inertia and the definition of free motion together constitute a
modern reformulation of Newton’s first law of motion. New-
ton’s second law of motion may be reformulated as follows.

The law of motion: With respect to any coordinate sys-
tem, the world line path of a possible or actual material body
satisfies an equation of the form

m(g5 —I5(x'§ 7)) = Fx\§T), (2.7)
where m is a scalar constant characteristic of the material
body called its inertial mass and F%(x',£ %) is the three-force
acting on the body. Note that the law of motion makes ex-
plicit use of the unique projective structure /7 on space-time.
The law of motion, therefore, depends ontologically on the
law of inertia; consequently, it is impossible to derive the law
of inertia from the law of motion.
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It was pointed out in the Introduction that the long-
standing difficulties surrounding the law of inertia led many
authors to reject the physical reality of at least certain
aspects of the geometry of space-time, most notably the pro-
jective structure of space-time. It is clear from the above
discussion and from the analysis of directing field structures
presented in our previous work that such a position is now
untenable. Our results compel the adoption of a realist field
ontology of the geometric structures of space-time. Weyl
was an early and forceful proponent of this viewpoint. To
emphasize the necessity for a physically real and causally
efficacious inertial structure of space-time, a structure he
called the guiding field, he devised the following paradox**:

Incidentally, without a world structure the concept of

relative motion of several bodies has, as the postulate of

general relativity shows, no more foundation than the
concept of absolute motion of a single body. Let us ima-
gine the four-dimensional world as a mass of plasticine
traversed by individual fibers, the world lines of materi-
al particles. Except for the condition that no two world
lines intersect, their pattern may be arbitrarily given.

The plasticine can then be continuously deformed so

that not only one but all fibers become vertical straight

lines. Thus no solution of the problem is possible as long
as in adherence to the tendencies of Huyghens and

Mach one disregards the structure of the world. But

once the inertial structure of the world is accepted as

the cause for the dynamical inequivalence of motions,
we recognize clearly why the situation appeared so un-
satisfactory. ...Hence the solution is attained as soon as
we dare to acknowledge the inertial structure as a real
thing that not only exerts effects upon matter but in
turn suffers such effects.
Let us analyze this example using the concept of the micro-
symmetry group of a geometric structure at an event p. Con-
sider a space-time manifold equipped only with a differentia-
ble structure, the plasticine of Weyl’s example. Then all
diffeomorphisms preserve this structure; consequently, the
microsymmetry group at any event p is an infinite-param-
eter group isomorphic to the group of all invertible formal
power series in four variables. Clearly, given an infinite num-
ber of parameters, one can straighten out an arbitrary pat-
tern of world lines (fibers) in the neighborhood of any event.
In contrast, the active microsymmetry group of a projective
structure at any event of space-time is a 20-parameter Lie
group isomorphic to the group P2 (see Theorem 5.3). The
fact that only a finite number of parameters are available
prevents an arbitrary realignment of the world lines of mate-
rial bodies in the neighborhood of any given event.

Weyl’s plasticine example shows that the Leibnizian view
of relative motion, namely the view according to which all
motion must be defined as motion relative to bodies, is self-
defeating in GTR. The fact that a stationary, homogeneous
elastic sphere will, when set in rotation, bulge at the equator
and flatten at the poles is well known. According to Weyl,
this phenomenon is to be accounted for in the following way.
The complete physical system consisting of both the body
and the local inertial-gravitational field is not the same in the
two situations. The cause of the effect is the state of motion of
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the body with respect to the local gravitational field and is
not, indeed as Weyl’s plasticine example shows cannot, be
the state of motion of the body relative to other bodies. To
attribute the effect as Einstein'® and Mach did to the rotation
of the body with respect to the other bodies in the universe is
to endorse a remnant of the unjustified monopoly of the
older body ontology, namely, the sovereign right of material
bodies to play the role of physically real and acceptable caus-
al agents.

lil. THE GEOMETRY OF THE INERTIAL STRUCTURE

Denote by M the n-dimensional, C ® manifold which
represents space-time. A curvein M isamap y: R—M and a
path in M is an equivalence class £ = [y] of such maps any
two of which are related by an invertible parameter transfor-
mation u: R—R. For convenience, in the discussion of curve
and path elements at some particular point peM, attention is
restricted to those curves which satisfy ¢(0) = p and to those
parameter transformations which satisfy p(0) =0.

A. Curve and path elements

A curve element '* of order k at peM is an equivalence
class j5y of curves through p which have the same Taylor
expansion with respect to some (and hence every) coordinate
chart (U,x), up to and including order k at OcR. A path
element of order k at peM is an equivalence class of paths
j:g consisting of all paths corresponding to curves in jy,
where yeé.

A second-order curve element 3y has local coordi-
nates ¥, and ¥} called n-velocity and n-acceleration, respec-
tively, and given by

. d . .
= —x'o9{0), =
" Py 70}, 7; PTE
A second-order path element j>£ has local coordinates & §
and £ § called (n — 1)-velocity and (n — 1)-acceleration, re-
spectively, and given by
dxoy o d?x%y

S ey |, S T ey,
Under a change of coordinate chart from (U x), to (T],)'c)p ,the
coordinates of j37 transform according to

2

x'op(0) . (3.1)

(3.2)

V=X, Ti=Xp+X,rivt, (3.3)
and the coordinates of j3£ transform according to
Es=(Xe+ X0/ X +X1€7),
Es=(X2Ef+ X006 +2X 060 +X 1)/
C(XrXnET?, (3.4)

—EUXEL X EPET X L+ XY
Xn+X2E77,

where X = xox ",

B. The role of the inertial structure

Although the transformation laws for 3, and £§ are
both linear, they are not homogeneous in the acceleration
variables. Thus there does not exist a unique standard of zero
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acceleration that is intrinsic to the differential topological
structure of space-time. Moreover, even the difference of the
accelerations of two bodies at the same space-time point has
no absolute meaning unless their velocities happen to be the
same. Hence, additional structure in the form of a geometric
structure field called the inertial structure of space-time or
the guiding field is required to provide the unique standard
of zero acceleration. This field may be either an acceleration
field or a directing field.

C. Acceleration and directing fields

Denoteby .£ | (M ) and .’} (M ) the bundles of first- and
second-order curve elements and by & (M) and Z*(M ) the
bundles of first- and second-order path elements. In each
case, the bundle of second-order elements can be regarded as
a bundle over the corresponding bundle of first-order ele-
ments.

An acceleration field!® is a cross section A:
L} (M)}—L?%(M). Such a field is described in terms of local
coordinates by functions A4 ; (x',} ) which transform under a
change of coordinate chart according to ¥

FiRES) =

ALEN) =X M (xA) + X bepin (3:5)

If j2yis a curve element at p with first-order part j}y, then
¥4 — AL (x',y}) transforms both linearly and homogeneous-
ly; consequently, there exists a coordinate independent zero
for these relative n-accelerations. An acceleration field is
called geodesic iff for every peM, there is some chart, (ﬁ,i)l,,
such that the functions 4 ;(¥,7) vanish at p. A geodesic
acceleration field (affine structure) is denoted by I" and has
the special functional form

ryn) = —Tiyin . (3-6)

Anacceleration field 4 determines a curve structure on M by
means of the differential equation

d *x'o i dxio

— T — 4 (x‘oy, d/) . (3.7)

A directing field is a cross section Z:D'(M ) — D*M ).
Such a field is described in terms of local coordinates by
functions = §(x",£ ¥) which transform under a change of co-
ordinate chart according to

Xo(XNZLXET) + X2, (XVE PES +2X 2 (x)E £ + X &, (x)

(Xr(x)+XoxIET)?

—£7

Xo(x)E P 5) + X0, (XIE PET + 27 (XIE £ + X0, (x)

(X () + X (€T

For a path element j2£ with first-order part J»€, the relative
(n — 1)-acceleration £ ¢ — = ¢(x’,£ ) transforms both linear-
ly and homogeneously; consequently, the zero for these rela-
tive (n — 1}-accelerations is coordinate independent. A di-
recting field is called geodesic iff for every peM, there is
some chart (U,X),, such that the functions £ §(x"£ §) vanish
at p. A geodesic directing field (projective structure) is de-
noted by /7 and has the special functional form

M 5(xLE ) = ESUT L, (X6 £ET + 20T, (x)6 £ + 1T, (x')
— (5, (X6 P67 + 2T 5, (xVE £ + I 7, (X)),
(3.9)

where the projective coefficients I7 }, (x') are traceless so that
IT;,, (x') and IT (x) may be eliminated from (3.9). A direct-
ing field = determines a path structure on M by means of the
differential equation

2. a
d *x%oy = (xio}/, dx 07)'
(dx"oy)? dx"oy
D. The inertial structure and free fall

Either of the differential equations (3.7) and (3.10) can
account for a kind of free-fall motion because it is always
possible to choose a coordinate system, say (Tl,f)p, in which
the fields 4 ; (¥',, ) and Z,(x',£ ¢) vanish at the given point p
for the particular choice of n-velocity or (n — 1)-velocity.
Note that the same coordinate system will not necessarily
work at a given point p for every choice of velocity; that is,
the fields 4 and = need not be geodesic.

(3.10)
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(3.8)

r

E. When an acceleration field determines a directing
field

A curve structure need not determine a path structure;
however, to every path structure, there corresponds a family
of curve structures.'’

Theorem 3.1: An acceleration field 4 determines a di-
recting field = iff 4 is of the form

ALx7) =B + C ), (3.11)
where C(x',y}) does not contain a term proportional to ¥,
and

ClxX AV ) =ACHx' ). (3.12)

Proof: For convenience, suppress the dependence of the
fields on the coordinates x'.

An acceleration field 4 determines a directing field Z'iff
for every peM, the (n — 1)-acceleration £ § determined by
A (y};)is the same as the (n — 1)-acceleration determined by
A5 (Ay) );thatis, £ ¢ depends only on £ . The formula for & ¢
in terms of 9| and ¥, is

E5=mrs —rina/niy. (3.13)
Hence, the condition that 4 must satisfy may be stated as
Yids(n) — i) _ A ian) — Az An)
) Ay '

(3.14)

Since, in general, n charts are required to cover the direction
fibers, the condition (3.14) may be more precisely stated as
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n[4304) — (/254 (An1)]
=y{[45tn)—(1/A4501)] (3.15)

for i#j. It follows from the transformation law (3.5) that

En)=A450r1) — (1/A2M45(Ar1) (3.16)
transforms according to
Elr)=X]E'r). (3.17)

The condition (3.15) states that the wedge product
¥, A E (¥4 ) vanishes which is equivalent to the condition that
E (¥} is proportional to 7} (see Ref. 18).

An acceleration field 4 which satisfies (3.11) and (3.12)
also satisfies (3.15) and hence determines a directing field =
given by

E3EN = [nCw) —riCc"m) /Ny, (3.18)
because the terms proportional to %, drop out and (3.12)
ensures that (3.18) depends only on £ {.

On the other hand, if an acceleration field 4 determines
adirecting field = and hence satisfies (3.15), then any term of
the form B (x',5, )y, may be chosen arbitrarily and the term
Ci(x',) that does not contain a term proportional to 7
must satisfy

n[Cvi) — (/AHC1An)]

=1 [Cn) - (1/AC1An)] . (3.19)
for i#j. It follows that
C'li) — (1/A%CAy1) =0 (3-20)

since the left side must be linearly dependent on ¥} by (3.19)
and yet by assumption cannot be a nonzero multiple of ¥} .

[y

+(Q/m)N8un) [ 1+ 205E £ + 20§ PEVT P [(Fr + FRe0) = ES(F + FE0)]

where the coefficients

iy =T — [V/(n+ )&y + 8T;) (3.24)
satisfy
Ij, =0 {3.25)

and determines the projective structure of space-time, and
where the coefficients

Fna = gna/gnn ’ (326)

Fap = gaﬁ / g nn
determine the conformal structure of space-time. Since the
factor [ 1 + g,5& £ + 24, PE7]"/? is not polynomial in the
variables £ ¢, the directing field is clearly not geodesic. We
have given more elaborate examples elsewhere.?! It is easy to
show that the acceleration field (3.22) is C! but not C* at

¥ =0,

G. Compatibility with special relativity

The essential features of the special theory of relativity
are incorporated into the general theory of relativity by the
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F. Acceleration fields which determine nongeodesic
directing fields

It is important to emphasize that directing fields deter-
mined by acceleration fields 4 which satisfy the conditions
(3.11) and (3.12) of Theorem 3.1 are not, in general, geodesic.
Consider, however, the following well-known result.'®

Theorem 3.2: If an acceleration field A4 satisfies the con-
ditions (3.11) and (3.12) of Theorem 3.1, and if C{x’,3 ) is C *
in the variables 3/, then the directing field determined by A4 is
geodesic.

Proof: Differentiate (3.12) twice with respect to 4 and
set 1 = O to obtain

goi iy 1 3*Ci(x',0) j
C(x’yl]) 2 a}/{a?/]; 7/11/1(’
from which geodesicity follows easily.

On the other hand, it readily follows from (3.12) that
C(x',,)must be C ' in the variables ¥, for all ;. It turns out
that important, physically relevant acceleration fields are
C < in the variables ; for all } except 7, = 0. Asaconcrete
example, consider the well-known one-parameter (Q/m)
family of acceleration fields?

A0 =B — Tarivy +(Q/meg.vivi) *Fird
(3.22)

(3.21)

where B:L | (M }—R, g is a Riemannian metric on M, I" is the
corrresponding affine structure, F; is the electromagnetic
field tensor, Q is the electric charge, and m is the inertial
mass. The directing field = determined by the acceleration
field (3.22) is given by

SEN=ES[H 6067 + 20,80+ 117, ] — [T, 8067 + 215,60 + 117, ]

(3.23)

[

requirement that at each point peM, the microsymmetry
group of the space-time metric is isomorphic to the Lorentz
group, SO(1,# — 1). As a consequence of this requirement,
derivative geometric structures, such as the conformal, af-
fine, and projective structures, have microsymmetry groups
(at each point peM ) the first-order part of which contains a
subgroup isomorphic to the group SO(1,n — 1). This obser-
vation motivates the following. :

Definition: A space-time geometric structure field is
compatible with the special theory of relativity (STR) iff its
microsymmetry group at each point peM has a first-order
part which contains a subgroup that is isomorphic to the
group SO(1,n — 1).

The inertial structure of space-time is a geometric struc-
ture field. It may be either an acceleration or a directing field.
In Sec. IV and V, it will be shown that such fields that are
compatible with STR must be geodesic. In each case, the
general result is proved by considering in turn the four possi-
bilities for the first-order part of the microsymmetry group;
namely, GL(n,R), SL(n,R), CO(1,n — 1}, and SO(1,n — 1).
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That only these four cases need to be considered follows
from the fact that GL(n,R) is the direct product of the dila-
tion subgroup and SL(n,R) , and from the following two es-
tablished results.

Theorem 3.3: The group SO( p,g) is a maximal subgroup
of SL{n,R).

Remark: An analysis of the maximal subgroups of the
classical groups has been given by Dynkin.?? Fortunately the
particular case of interest is listed in a table in the book by
Gilmore.?

Theorem 3.4: If G is a subgroup of SL(n,R) isomorphic
to SO( p,9), then G is conjugate to SO( p,g).

Proof: The defining ( p + g)-dimensional representation
of SO( p,q) is both real and self-contragredient. It is easy to
show that all tensor representations and the irreducible
components of these representations are also real and self-
contragredient. The isomorphism D:SO( p,g)—>GCSL(n,R)
provides a real vector representation of SO( p,g) which must
be equivalent to an irreducible part of some tensor represen-
tation which is therefore self-contragredient. There exists a
real symmetric bilinear invariant for the representation D
which is unique up to a constant multiple.?* The signature of
this metric must be p — g (or ¢ — p), and the diagonalization
procedure provides the coordinate transformation that maps
each element of G into its conjugate in SO( p,g).

IV. GEODESICITY OF STR COMPATIBLE
ACCELERATION FIELDS

The group of jets j*f of diffeomorphisms f: M—M
which satisfy f{p) = pisdenoted by G pk. Ajet jf, JeG : with
components ( f/, f ;) is a microsymmetry of an acceleration
field 4 at peM iff

Al = A + farin (4.1)

For an infinitesimal microtransformation (5] + €F},eF ),
the condition (4.1) becomes

Firids,n)=FA{n)+ Furir . (4.2)

The following theorem sets an upper limit to the degree
of microisotropy that an acceleration field can possess.

Theorem 4.1: The microsymmetry group of an accelera-
tion field is a subgroup of G that is isomorphic to a sub-
group of G } (GL(n,R)).

Proof: Write (4.1} as

Frrivi =45 = f14n). (4.3)
Evenifthefield 4 5(y|)isnot C?in the variables 7, , the right
side of (4.3) is C? since the left side is. Hence, the second-
order components f; of a microsymmetry can be deter-
mined in terms of the field A and the first-order components
[} by differentiating (4.3) twice with respect to ¥, and set-
ting v} = 0.

The following well-known result shows that the maxi-
mal degree of microisotropy is attained by a geodesic accel-
eration field.

Theorem 4.2: The microsymmetry group of a geodesic

acceleration field is a subgroup of G2 that is isomorphic to
G!l.
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Proof: Substitute (3.6) into (4.1) to obtain the microsym-
metry group element

(FiAfiTf =T f1F2). (4.4)

Theorem 4,3: An acceleration field 4 whichis atleast C !
in the variables 74 and which has at every point peM a mi-
crosymmetry group having a first-order part that contains
the group of dilations is of the form

A1) =Byl —Turiri,
where B and I}, depend only on p.

Proof: A microsymmetry which has a dilation for its
first-order part has the form (48}, f; ), where the f}, are de-

termined by A and the field 4. The condition (4.1) gives in
this special case

A45(n) = 4547 — fariri (4.6)
Differentiating this equation with respect to A and then
setting A = 0, one obtains

AL(A) = A4,00] =2 £

Theorem 4.4: If the first-order part of the microsym-
metry group of an acceleration field 4, which is at least C ' in
the variables ¥}, is isomorphic to either GL(n,R) or
CO(1,n — 1), then A4 is geodesic.

Proof: Both GL(n,R) and CO(l,n — 1} contain the
group of dilations. Hence the field 4 is given by (4.5). Togeth-
er (4.1) and (4.5) yield

(4.5)

(4.7)

fi=FfTp—TLfifi (4.8)
and

Bif/=fiB]. (4.9)
From (4.9), it follows by Schur’s lemma that

B! =BS5;. (4.10)

A term like B8] may always be removed from 4 by a suitable
change of parameter.

Theorem 4.5: If the first-order part of the microsym-
metry group of an acceleration field 4 which is at least C ! in
the variables 7 is isomorphic to SL(n,R), then 4 is geodesic.

Proof: By Theorem 4.1, the microsymmetries of an ac-
celeration field 4 have the form (f/,S (/). In Appendix
A, it is shown that for the case of a microsymmetry group
isomorphic to SL(n,R), the second-order part F; of an in-
finitesimal microsymmetry is given by

Fj =S} F!, (4.11)
where the S} depend only on the point peM and have the
specific form given by (A16). Using a complete set of F/,

namely,

(Fy =868 —(1/n)5i6; , (4.12)
one obtains from (4.2)
7i 42, (1) — (/n8 75 A3, ()

=6,45(1)— (1/n)8; A5(V)) + Siviry . (413)
Define B {y}) by

AL(4) = B) — Riarivk . (4.14)
Then (4.13) gives
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7i BLn) — (I/n)8 v BL,(vh)
=&, B(n) — (1/n)8; B'(y})
n? +1 2 n? +1

+ 2 }"x?’i 5s7’1 R -
(4.15)
Next, define C(y}) by
B () =Cn)+21n*+ 1)/(n* = )] i Ri .
(4.16)
Then (4.15) gives
rCLr) —(1/n8riChL(n)
=8.Cy}) — (1/n)8:CYY) . (4.17)

From (4.13), it is clear that 4 ;(0) and hence B (0) and C0)
vanish. In (4.17), choose i = s without summing to obtain

7iC5ri)=0 (NO SUM). (4.18)
Hence provided 3} 0,
C.{ri)=0 (4.19)

However, C*,(y}) is at least C° since 4 4(y4) is at least C'.
Thus (4.19) holds for all 3} ; consequently, C*(y} ) depends at
most on the ¥ component of the n-velocity. For any fixed s,
denote ¥} by uand C*(3} )by f{u). Thenchoosingi = s = rin
(4.17) without summing, one obtains

u % =f. (4.20)
Hence, f{u) = ku, and

C*(vi)=k,y; (no sum). (4.21)
Then (4.17) gives
718, k; — (1/n)8; k.

=68 kv — (1/m)é5 k¥, (no sum). (4.22)
Choosing i = r+s, one obtains

vs k, =k,y7 (no sum). (4.23)
Hence k. is the same for all s and

C'lyi)y=¢Cyy, (4.24)

where C depends only on peM. Since such a term may al-
ways be removed from A4 by a suitable change of parameter,
A is geodesic.

Theorem 4.6: If the first-order part of the microsym-
metry group of an acceleration field 4, which is at least C ' in
the variables 4 , is isomorphic to SO( p,q) [hence, in particu-
lar, to SO(1,n — 1)], then 4 is geodesic.

Proof: If an acceleration field 4 is a homogeneous qua-
dratic in the variables ; with respect to some coordinate
system, then it is a homogeneous quadratic in the variables
¥, with respect to any coordinate system, and is, moreover,
geodesic. Since an active symmetry does not depend on the
choice of coordinate system, the invariance condition (4.2)
may be applied in that coordinate system in which the first-
order part of the microsymmetry group is SO( p,g) in its stan-
dard form (see Theorem 3.4). Then, for an infinitesimal
SO( p,q) transformation

Fop =0u Fiy= —F,, . (4.25)
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Also, the second-order part of the infinitesimal microsym-
metry is given by

Fj =(1/2)S i °F,, , (4.26)
where S, ab has the specific form (B22) derived in Appendix
B where the R: jx» H', and V' depend only on the point peM.

The invariance condition (4.2) together with (4.25) and (4.26)
yields
(7"1'17"" — V) A5k n) + (04 3 () — 7°A 5 ()
i ab?’l 7 =0.

Define the field B ' by

(4.27)

ALY = B ) — Ririv + @/n) n™ vt R, v
A Nr=2) e o,
n(n - 1)(n + 2) [77;k7’17’11(H + 27/11 yal]
(n+1)n—2[1 C
22— NV —wnivfV
2 — VYV =itV
(4.28)

It follows from (B22), (4.27), and (4.28) that B {(y} ) satisfies

—VIn"™)B (1) + (7°B (1) — "B (r}) = 0
(4.29)

This condition is just the infinitesimal version of the invar-
iance condition

BiAjyl)=A4;B'n),
where A€SO( p,gq).

For the following discussion, the summation conven-
tion is suspended. In (4.29), choose i = a #b and relabel i—r
and a—i to obtain

Bi=y\ B, —y'y"y| B, (r#i). (4.31)

Next, takea, b,and all different in (4.29) and use the relabel-
ing a—i and /—r to obtain

(4.30)

Vi B =vVin'Bh, i#r, i#s, rés.  (432)
Then

B, =n"v\y"B /vy, i#r, i#s, r#s. {433
Hence, (4.31) and (4.33) yield

Bin)=nHr). (4.34)

The summation convention is reinstated. Since B (¢} ) is
at least C' in the variables ¥,, H () is at least C' in the
variables ¢4 for y,7#0. The example,

H{y\) = marivi)” (0<m<y), (4.35)
shows that H (1) need not be C' at y, = 0; however, that
H{y\)is C° may be shown as follows. Let ' be any fixed
nonzero vector. It is clear from (4.31) that B(0) = 0. The
difference quotient for B {{y,) at ¥, = 0 in the direction u is

BiAu/A = Au'H (Au)/A = u'H (Au) . (4.36)
Since By} )is C,
w lim H (Au) = u*B', (0) . (4.37)
A0

Clearly, B/, (0) = 8} B, where B depends on peM but is in-
dependent of u. Hence
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lim H{iuw)=B. (4.38)
A0

The field 4 is geodesic because a term such as (4.34) can
always be eliminated by means of a suitable change of pa-
rameter and the other terms on the right side of (4.28) consti-
tute a homogeneous quadratic in the variables 7} .

V.GEODESICITY OF STR COMPATIBLE DIRECTING
FIELDS
Ajet /2 feG? is a microsymmetry of a directing field =

at peM iff*> |

. ( [ ) _SEERENSIE — [RE RS8N
TN rred (fresp
L SEEIEESIEN - SLEIETS 7
(frELP ’
(5.1)

where the convention £} = 1 has been used in order to ex-
press the result in a compact form. For an infinitesimal mi-
crotransformation, the condition (5.1) becomes

EspE N FPET+ FE—EAFE7+ FOY+ 255N FRé1 + FI1 + ELEN[ Faét — F3

=F e+ 2F 80+ F o — ST [ Frub ST +2F 60+ FL.].

Theorem 5.1: Microtransformations of the form
(6/,8}a, + 8).a;) are microsymmetries for any directing field.
Remark: The result follows easily from (5.1). Moreover,

(fL0N8L F i) = (1 f T ) (5.3)
and since
(BL TN fe + 8 ) =8, T +8 f + 8L 1), (54)

attention may be restricted to microsymmetries ( £/, f,f }"ji)
which satisfy }JZ =0,

The subgroup of G2 consisting of the elements of the
form

(a},a;a; + aia;)
is denoted by PZ. This group is characteristic for geodesic
directing fields.

Theorem 5.3: A directing field is geodesic iff at every
peM its microsymmetry group is a subgroup of G 2 isomor-
phic to P2,

Remark: This theorem is a combination of Theorem 5
and Theorem 6 of Ref. 4. The directing field /7 is then given
by (3.9) and its microsymmetries have the form

FAfiMlG =T f7Fe+ Fife+ Fif). (55
Note that for this case
Fio =My —fNTLf7 17, (5.6)

which does satisfy /5 =0.

The degree of microisotropy exhibited by geodesic di-
recting fields is maximal for directing fields.

Theorem 5.4: The microsymmetry group of a directing
field Z'is a subgroup of G ? that is isomorphic to a subgroup
of P2,

Proof: In Appendix C, it is shown that the traceless part

i« of the second-order part F ; of an infinitesimal micro-
symmetry of a directing field is determined by the first-order
part F/ of the infinitesimal microsymmetry and by deriva-
tives of Z'§(x".£ ¢) with respect to £ ¢ evaluated at £ ¢ = 0.

Theorem 5.5: If at every point peM the first-order part
of the microsymmetry group of a directing field = is isomor-
phic to GL(n,R) or to CO(1,n — 1), then = is geodesic.

Remark: This result follows from the fact that the
group of dilations is a subgroup of both GL(»,R) and
CO(L,n — 1); so that Theorem 6 of Ref. 4 applies. This
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(5.2)

]
theorem states that a directing field which admits at every

PEM a microsymmetry ;2 feG 7 with f/= A8 and A #11is
geodesic.

Theorem 5.6: If at every peM the first-order part of the
microsymmetry group of a directing field ='is isomorphic to
SL(n,R), then = is geodesic.

Proof: Decomposing (4.12) into the various possible in-
dex combinations, one obtains

(F Py =808 — (1/n)6P8;, (FO) = —(1/n8),
(Fip =87, (Fy=867, (5.7)
(Fh)p = —(i/nbg, (Foh=—(n=1)/n.

The traceless second-order part of F ; is given by

(Fuly =855 (5.8)
where S/} is given by (A17). Then (5.2) splits up into four
conditions corresponding to the choices ( p,0), (p,n), {n,0),
and (n,n) for the indices (r,5). The simplest choice {,5) = ( p,#)
gives

E2, ) =8:RE LY +2REY +R )

—2R7. 67 —2R;, +ET(2R, 6V +2R ).
(5.9)

Define B “(£ §) by
ST =BET)+ETRLELET +2RLET+R )
—RELEFET+2RTEV+RG,) . (5.10)
Then (5.9) and (5.10) together give

B =0. (5.11)

If the above procedure is repeated for the choice
(r,s) = ( p,0), one obtains

ETBLET) —6;BES) —(1/n)8;B£5)=0. (5.12)
Hence
B¢£$)=0. (5.13)

Consequently, the field = is geodesic.
Theorem 5.7: If for every peM the first-order part of the
microsymmetry group of a directing field = is isomorphic to
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SO( p,g) [hence, in particular, to SO(1,n — 1)], then ='is geo-
desic.

Proof: To show that = is geodesic, it is sufficient to show
that at any point peM and for any (n — 1)-velocity £ ¢, the
function = §(x/( p),£ ¥) is a cubic in the variables £ ¢ of the
form (3.9) because if = has that form in one coordinate sys-
tem, it will have that form in all coordinate systems.2¢ Since
an active microsymmetry is independent of the choice of
coordinate system, the infinitesimal microinvariance condi-
tion (5.2) may be employed in the coordinate system in which
the first-order part of the microsymmetry group is SO( p,g)
in its standard form. An infinitesimal microtransformation
is (5 + €F /\€F ), where (4.25) and (4.26) hold. A complete
set of such transformations is given by

(Fy)” = 6/6, —6/(; . (5.14)
Then (5.2}, (5.14), (4.25), and (4.26) yield the constraints for
(rs) = (pv),

EEN[MMET —PEL] — (T EYET) — T EHED)

__Sa #Vé-pé— +2Sa uy, { +S:,,’w

—ES[SI ELT 2SI MEL + ST, ], (5.15)
and for (r,5) = ( u,n),
Z5E 0™+ EPE ] — 297E ESES)
NETELET)
=S, UG LT+ 2S5, L L 4 5,
—ET[SoEFET + 28, E P+ 804" . (5.16)
With reference to (4.28), define
F,k _R_]k - (1/”)77""[77,1R mk + MR mj]
%2—) [ H' +8H, +6,H,]
%{i;}—”JFﬂ [@/n), Vi — 8V, —8.V,],
(5.17)
and define /7 j, by
I =, +[1/n+ )5 + 8. T;), (5.18)
where IT7, = 0. Then define the field B “{£ {) by
EET) =BT+ H5(£7), (5-19)

where IT (£ {)is given by (3.9). Then (5.15), (5.16), and (5.19)
yield

ELnPBRET)~ET n*PBGET) + 9B (€T

nBHET)=0 (5.20)

and
" + e LEPBGEST) =" (25 'BUET) — ETBHET)).
(5.21)

Itis obvious that the terms involving '},  will drop out after
the substitution (5.19) because they drop out in the accelera-
tion field case and because (5.1) is a direct consequence of
(4.1) and (3.18).

By means of the same argument used to derive (4.34)
and (4.38), it follows from (5.21) that
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BET)=ETH(ET), (5.22)

where H (£ §)is C °in the variables £ ¢. From (5.21), it follows
that

B H(E ) =n"(2 {BET) —£SBHET)
+EFEFBRET). (5.23)
Hence,
EtnPBGE") —EinPBGET)
= —n"ETEIBET) —ETBHET).
Together (5.20) and (5.24) give
NETE B ET) —ETBHET)
=BT — 1B HET).
Then (5.22) and (5.25) yield
NHETHET) =" fH(ET).
Consequently, H (£ ¢)=0and =

(5.24)

(5.25)

(5.26)

is geodesic.

VI. UNIQUENESS OF THE PROJECTIVE STRUCTURE

In Secs. IV and V, it was proved that any equation of
motion structure that has a sufficient degree of microiso-
tropy to be compatible with STR must be geodesic and hence
must define a projective structure on space-time. In this sec-
tion, it is proved that such a structure must be unique for
otherwise a subspace structure exists in some region of
space-time.

The causal structure of space-time is determined by a
conformal structure which may be described locally by an
equivalence class of metric tensors

{e*"g, (x)| ¢ R* >R} . (6.1)
This first-order structure determines a unique sequence of

prolongations to arbitrarily high order. The second-order
structure is characterized by the conformal coefficients'’

K,k - 5g (grjk +g"k_] gjk,r)

—{(1/2n)(6/8"8 sk + 61.8"Crs; — 8k 88 Cret) -

(6.2)

which satisfy X ) = 0 and are independent of the choice of
gauge ¢:R*—>R.

The set of projective structures that are physically com-
patible with a given conformal structure is severely limited
by the following theorem.

Theorem 6.1: In order that it be impossible for a materi-
al body governed by a projective structure /7 to break the
light barrier determined by a given conformal structure (6.1),
it is necessary and sufficient that the projective coefficients
IT’, be given by

e =K}y +~ | = 6T +810) 8,8,

(6.3)
where I, transforms as does the trace of an affine connec-
tion. Moreover, the projective and conformal structures
then define a Weyl structure with an affine structure given
by
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L =5 + [+ )T, + 8:T))

=K +(/n)8 T, + 8.1, — 88T, ] . (6.4)

Remark: This theorem was first proved by Ehlers, Pir-
ani, and Schild.? A complementary geometric derivation of
the compatibility condition has been presented in one of our
previous papers.?” Note that (6.3) follows easily from (6.4).

The following theorem shows that in the context of
GTR it is not possible for two distinct projective structures
to coexist on space-time.

Theorem 6.2: Let /7 and J7 be two projective structures
that are distinct throughout some region of space-time. Sup-
pose that both of these projective structures are compatible
with the conformal causal structure of space-time in the
sense that they both satisfy a relation of the form (6.3). Then,
throughout the given region, there exists a subspace struc-
ture.”®

Proof: From (6.3), it is evident that the only way that I7
and IT can be distinct is to have

r.#r,, (6.5)
since K }, and g;, g are common to both /7 and IT. The sub-
space structure is defined by the covector field

oy =T =T, (6.6)
which is nonvanishing throughout the given region. Note
that if /7 and I7 are continuous and differ at an event p, they

must differ throughout some open neighborhood of the
event p.
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APPENDIX A: SUBGROUPS OF G2 ISOMORPHIC TO
SL(n,R)

The Lie group G is the set of all jets j3 f where
SR"—R" is a diffeomorphism which satisfies f(0) = 0 (see
Ref 29). The Lie algebra ¥ is spanned by (E /,E I"} which
satisfy the commutation relations

[ELEL] =8{E! —8E],
[ELEL) = S{E!" — 8B [ —
[EXET"] =0.

STEY, (A1)

For an acceleration field, the second-order part of a
microsymmetry is a function of the first-order part
(Theorem 4.1). Thus the microsymmetry group is isomor-
phic to a subgroup of G2 which consists of elements of the
form (/.S (f/)). From the group product for G2, it fol-
lows that

Sl frh) =f!Splh)) + SL(f R . (A2)
For the case in which the subgroup is isomorphic to the
group G ,,, the function S % ( £/} is given by the second part of
(4.4).

From (A2), §},(6}) =
group elements

jk(5’ + €F ! )—eSJk,F’

0; consequently, for infinitesimal

(A3)
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The Lie algebra sl(n,R) of SL(n,R)C G} is spanned by

E/=E!/—(1/nE%s!, (A4)
which also satisfy

[E/EL] =6{E!~8E]. (A5)
Moreover,
[ELE] =8[E™ —8E"—8TEY + (1/n)S'El" . (A6)

The generators of a subgroup of G2 which is isomor-
phic to SL(n,R) have the form

HI=E/+)S,iE7, (A7)
where
$32=0. (A8)

The requirement that the generators H / satisfy the same
commutation relations (AS5) as the generators E / yields the
constraint

8iS Li — 8IS i — 8ISk + (1/n)8/S 5L
_6rs.£t{ +61 kt! +51 sk i _(l/n)als-:t{

=58[S5i —~8Sul . (A9)
Contraction with respect to the indices i and r gives
(n+1/nS5, =885k +8S5k + 884t
— 8,8 % — 8S%L + (1/n)8,.S 5y - (Al0)

The relation (A8) can also be obtained from (A10) by con-
traction on & and / followed by contraction on 7 and s.
Contraction of (A 10) with respect to r and s gives

Set=1I[n/(n—-1)188%5 — [1/(n —1)16,5¢2% . (Al1l)
Contraction of (A 11) with respect to ¢ and / gives
Sk =n+1)S52. (A12)
Define
w=1[n/n* + )18, . (A13)

Then, (A10) and (A 11) give, after a relabeling of indices,
Wi =6.R} —8 R\, —6, R, +(1/n)8 R,

+ ;—”—lw;iaz +58.8)RS,

_ n—ilai(aj R% +6.R%). (A14)

Finally, set

R.=R5, R,k—Rk+[1/(”+1)](5'Rk+5' R;),
R (A15)
where R ; is traceless. Then
Li=8!R; —&RL, — & R, +(1/n) R,
n’+1 i o5 i o5
+ T8 + BB R,
1 n? 4l ;
T B8 R + 6 R,). (A16)
nn

LetS! jx» be the part of S, ¢ that is traceless with respect to
contractlon oniand j. Then

o =8 Ry — 8 R, — 8 R}, + (1/n)8: R} .
(A17)
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The above derivation shows that any solution of (A9)
must have the form (A 16). That (A 16) is the general solution
of (A9) may be proved by direct substitution.

APPENDIX B: SUBGROUPS OF G2 ISOMORPHIC TO
SO(p.9)

Because of Theorem 3.4, it may be assumed without
loss of generality that the first-order part of the subgroup of
G? is SO( p,q) in its standard form. Then, the generators of
its Lie algebra are

L ij — ”irE J__

7"E,, (B1)

where 7, and %” are diagonal and the diagonal entries 7, and ‘

1" are + 1for I<i<pand — 1for p + 1<i<p + q. The Lie
algebra of G2 is spanned by (E /,E i) which satisfy the com-
mutation relations (A1). The L7 satisfy the commutation
relations

[Lij’Lkl] — —7]”‘L jI_,’,jILik_+_,'7i1L jk+,7jkLi1 (B2)
and
[LOEP] =(LREr —LVET—(LITEL, (B
where

(LY); =7"6] — 0”8 . (B4)

It follows from the argument presented at the beginning
of Appendix A that the generators of a subgroup of G2
which is isomorphic to SO( p,g) have the form

H’S=Lrs+%S;krsEijk. (BS)

The requirement that the A ~ satisfy the commutation rela-
tions (B2) yields the system of linear equations

nrlS;kab _ siS; ab __ axsb 4 nbiS}Jk rs
~ &7 mgi ab_+_6 s ab_+_6jbnamsi"krs
— & bmgi m 5inrmsjmab + 8yt ab
+ 8 amS}m rs__ 6k7]bmS1{'m rs
- nras;ksb _ nsbs;km + ”rbs;k:a + nsas;krb' (B6)

The objective is to find the general solution of this linear,
homogeneous system of equations.

Define
=N,05 A L9l = R ;;j (B7)

|

where
Qijkab = 5? Rj'l
+ [/(n— 1)][n,6:H b_

—&8'R &t 6f7li177bm R ink

By cyclic permutation of the indices i, j, and k, a system of three equations for the “three” unknowns S,

obtained, which may be solved to yield

1 a a,
Su = [Q,,,k — 10w + Q)|

(n+
Substitution of (B10) into (B19) gives
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— 8" Rlp +8imum™ R )},
BLH ) + 1, (87H ¥ —

and

Vi =R, Vk=77kam’ (B8)
and
H‘=?7'""R',,.,,, H =u,H'. (B9)
Then define R : & by
Ri=Ri,+— "  [8V, +6V, — 2/, V'
Jjk Jjk n—1)n+2) [ i Vi kY5 { ”)”Lk ]
1 . . )
- _[&H, +6.H, — N, H'].
(n—l)(n+2)[l k wH, —(n+ 1y H')
(B10)

Then both the horizontal and the vertical trace of R & van-
ish. Also, define

S, t=8m"*, St=85mPt=5". (B11)
By contraction on r and i, {B6) yields

smsinjab

(n — OS5 + ™S 1% + MM
___nsaijk _ nsbR}zk +6J§Skab+6.;(srjab

+ 8RS, — 8 R b + 81" R — SR
(B12)
A contraction on s and a in (B12) gives
NS kT Ule;m bm 4 NSk ®
= 5;7Vk + &7 V; - 77,'177me fnk — 7R fnj . (B13)
From (B13), it follows by contraction on jand b that
Sk=H*—n—1)V*. (B14)

A double contraction of (B6) on / and jand on r and k
yields

(71 . l) Sab=5;zsb__6fsa.
Together, (B14) and (B15) give
S =[1/(n — 1))(6LH * — 8LH ) — (8.V ° — 82V 9).

(B15)

(B16)
Next, define
S,-Jk = n,,S’ ab (B17)
Then (B12) becomes
(n— DS + 8™ + Sy ™ = Q™ (B13)
, — 8 num™™R
61‘-’1{”)] — [m462V i AGE S M b_ 5 Vel .
(B19)

®, S, and Sy; % is

(B20)
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Qi = 5?§ = SR+ 5;771'177'"" R,
{n+1)

— 8 1un"™ R i + 85" R 1y

= 5:"71'177” R

-(—m [7,(6¢H *— 82H %) + 1, (6;H b — 8H ) + 1, (67H * — 87H )]
n —
_ m [(n2 — 2, (827 * — 82V) + (n? — 2 85V — 87V)
+ 2, 8V P =8V . (B21)
If the factor n/(n + 1)(n — 2) is absorbed into R J"k, then
S: ab_ntaRb _nsz +(5a bm 5b am)R k+(5a bm 5b am) 1_(1/n)
X [77""(57 e — 6/ R i + 51 - & R o)+ 0P (85’ — 8™ + 98I — ) R 1,
ia, m am ) (n + 1)(’1 1 a a
+ (n"n® " R i + 1 R MJ)] —m[5(5 “H*—8,H
i i i 1 - i Qa a
+BLEH = SLH) (o °H )] — S sy -8
+ & 4 b 5}’V") — l njk(ﬂi“V b_ nibV”)] . (B22)

Provided that the factor absorbed into R j, is allowed for, this result is compatible with the definitions (B7) and (B10).

The above derivation shows that any solution of (B6)
must have the form (B22). That (B22) is the general solution
of (B6) may be proved by direct substitution It is worth not-
ing that the A’ terms, the Vterms, the R & terms with the
factor 1/n and the R’ s« terms without the factor 1/n sepa-
rately satisfy (B6).

The solution (B22) is not valid for n = 2 because of the
factor (n - 2) in the denominator of (B20). However, for
n =2 it is readily verified that

P01 _ .10_ i
ij - - Rjk

is the solution of (B6).

(B23)

APPENDIX C: //-'\,L FOR A DIRECTING FIELD
MICROSYMMETRY

In this appendix, it is shown that the traceless part F *
of the second-order part F, of an infinitesimal microsym-
metry of a directing field = is determined by = and the first-
order part F; of the microsymmetry.

By virtue of Theorem 5.1 and the accompanying re-
mark, condition (5.2) gives

Fo gpes +2Fegp+Fo — g
X[ Frepes+2Fn g0+ Fn ] =E€%), (1)

where E “(£ §) is the left side of {5.2). By differentiating (C1)

with respect to § § repeatedly and then setting £ § = 0, one
obtains
Fe, =E*0), (C2a)
25y 85 Fr, =E300), (C2v)
Fs, — 52 1?" -5 F",, =1E%,(0), (C2c)
S5 Fns + 82 FL, +82Fn = —JE% ,(0).  (C2d)

From (C2b), it follows that
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r
Tv" = — [/(n+ )] E£0), (C3)
s =3E30) — [65/(n+ 1)] E 5(0)).
Similarly, (C2c) gives
Fno=—1[1/(n+ 1)]E ,(0), (C4)

~ 1
75, =5 |Em0 -
and (C4) gives
Fp, = —1[1/n+ 1] E5,(0). (C5)
Since E “(§ {) is determined by £ {, F}, and the field Z, it
follows that the Fj, are determined by the F; and the field

—
=
[E=10

163 E£,(014 67 £5,0)
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Asymptotically flat, dynamic, axially symmetric space-times are considered from the point of
view of the characteristic initial value problem and the expansion of solutions in powers of .
Imposing conditions such that the system initially be exactly static and nonradiative finally, a
news function is constructed which governs the dynamics of such a space-time and which yields a
finite, nonvanishing total loss of the Bondi mass. Furthermore, the Riemann tensor (to order r—?)
is known explicitly for all time since an expression for the mass aspect is also determined. It is also
shown that the total change in the asymptotic shear is related to the total change in the Bondi

mass. Finally the implications concerning transitions between two exactly stationary states are

discussed.

PACS numbers: 04.30. 4 x, 02.40. + m

|. INTRODUCTION

The gravitational radiation emitted from an isolated
source distribution in general relativity has been one of the
most elusive of physical phenomena. This is true not only
from the point of view of the experimentalists, who during
the past two decades have been assembling sensitive devices
which might eventually measure the minute changes in
space-time due to the motions of astrophysical objects, but
also from the point of view of the theoreticians, who during a
period lasting over three times as long have searched for an
equally evasive result: a means by which one could deter-
mine a solution to the Einstein field equations which would
represent a dynamic, asymptotically flat space-time. Such a
system is normally thought of as one for which there exists a
body or a collection of bodies that are confined within a
world tube of compact space-like extension for all time.

Since, due to the complicated nature of the nonlineari-
ties presented by Einstein’s equations, it is highly unlikely
that an exact time-dependent, asymptotically flat solution
will be obtained in the near future, a number of methods
have been developed which treat different aspects of the field
equations to varying degrees of approximation. Perturbation
procedures which date from the inception of general relativi-
ty and the first attempts to make conclusions concerning
gravitational radiation have evolved to an outstanding level
of sophistication. Yet in spite of the intriguing mathematical
paraphernalia that has been introduced, such as matched
asymptotic expansions, regularization of point masses,
curved-space wave operators, etc., a number of criticisms are
waged against the validity of such approximation methods.
For example, the assurance is still lacking that the tech-
niques using successive iterations, which are presently of a
purely formal nature, do in fact produce expressions that
converge to exact solutions of the field equations. Perturba-
tion calculations also rely upon expansions in terms of pa-
rameters whose values must be considered to be small in

* Present address: Department of Physics, Stevens Institute of Technology,
Hoboken, New Jersey 07030.
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comparison to unity. As is often the case, interesting relativ-
istic effects become dominant when the values of these pa-
rameters are nearly equal to 1. In situations where one can-
not postulate a small expansion parameter other methods of
obtaining solutions must be employed. Often the validity of
the perturbation method is called into question since one
cannot make precise statements concerning the errors asso-
ciated with the higher-order terms neglected in the approxi-
mation procedures.

During the past twenty years or so, the description of
gravitational radiation and asymptotic flatness based upon
the analysis of the null or characteristic surfaces of a space-
time has led to a great understanding of the properties of the
gravitational field in regions where the space-time closely
resembles that of Minkowski space. While this method, first
introduced by Bondi and his collaborators,' has blossomed
into a full-fledged and usefully descriptive theory, it avoids
the difficulties associated with a description of the region
immediately surrounding the sources of the gravitational
field, where a host of unknown nonlinear effects are likely to
occur.

More recently numerical calculations performed on
large-scale computers have been added to the armament of
methods created to deal with the theoretical problems that
must be overcome in order to gain a more complete under-
standing of the properties of gravitational radiation. The
goals in this domain are by far the most ambitious since an
“exact” description of both the behavior of the gravitational
field and its sources is sought. However, still being in its
infancy, many technical difficulties remain to be resolved
before an unambiguous solution to the problems occurring
in dynamic strong field, fast motion relativity is provided for
by this method.

From the point of view of the experimentalist who will
eventually make a direct measurement of the changes in gra-
vitational curvature due to the propagation of disturbances
emanating from a bounded source distribution, asymptotic
procedures may not simply be last resort techniques to be
applied in view of the lack of knowledge of general methods
for determining dynamic solutions to the Einstein equations.
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Since a gravitational wave detector will most likely be locat-
ed at astronomical distances from any realistic emitter, the
properties associated with the behavior of material sources
will eventually have to be deduced from direct measure-
ments of the asymptotic Riemann tensor components, The
measurements must therefore be correlated with what can be
known theoretically about the asymptotic Riemann tensor.
Whether or not the remote observer will ever, by purely gra-
vitational measurements alone, be able to distinguish
between radiation emitted from concentrations of gravita-
tional curvature and compact distributions of matter has
been called into question recently by the work of Lawitzky?
who has demonstrated that dynamic exterior gravitational
fields may have vacuum sources as well as different sources
consisting of matter distributions.

Asymptotics also have certain theoretical advantages.
The first being that unambiguous definitions of such notions
as energy loss, incoming radiation, stationarity, etc., can be
introduced. Second, it has been demonstrated that if the re-
duced analytic initial data obey certain conditions, then the
Bondi type expansions are in fact convergent to solutions of
the Einstein equations.” These methods can therefore offer
an exact description of the behavior of the gravitational field
far from an isolated source distribution.

The purpose of this paper then is to analyze the charac-
teristic initial value problem with a view toward obtaining
explicit expressions which might lead to a convergent
asymptotic series solution to Einstein’s equations and from
which the exact asymptotic properties of the Riemann ten-
sor may be discussed. In particular, the construction of a
space-time which is permanently isolated and demonstrates
certain physically reasonable behavior is considered. This
task is quite formidable in its completely general form where
there exist no Killing vector fields. Therefore, certain sym-
metry requirements will be imposed in order to simplify the
field equations. However, the “highest” symmetry that per-
mits gravitational radiation from a permanently isolated sys-
tem is that of axial symmetry with one hypersurface orthog-
onal (rotational) Killing vector field. The imposition of any
additional symmetries yields solutions which if permanently
isolated are static and therefore nonradiative, or, if radiative,
are not always confined to a limited three-dimensional re-
gion of spatial extent. These latter solutions include the
plane and cylindrical wave solutions as well as the boost-
rotation symmetric solutions.*

Therefore, the next section introduces a mathematical
description of axially symmetric space-times convenient for
the discussion of systems that undergo gravitational transi-
tions from one nonradiative state to another nonradiative
state. After a brief review of previous attempts to understand
the nature of permanently isolated dynamic axisymmetric
systems, a method is presented in Sec. III that leads to the
construction of a news function which yields a nonzero, fin-
ite mass loss associated with a system having no incoming
radiation. Section IV is devoted to a discussion of some of the
general properties of the news function as well as the higher-
order Bondi functions. Finally this paper concludes with
some observations concerning the advantages and disadvan-
tages of the asymptotic techniques.
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Il. AXIALLY SYMMETRIC SPACE-TIMES: AN
ASYMPTOTIC DESCRIPTION

A. General considerations

The analysis of the asymptotic behavior of the gravita-
tional field associated with an insular radiating source distri-
bution commences with the formalism introduced by Bondi,
van der Berg, and Metzner' who, using a suitably chosen
coordinate system, were able to investigate the properties of
the solutions of the Einstein field equations corresponding to
axially symmetric isolated systems. Such space times with
circular group orbits admit a hypersurface orthogonal Kill-
ing vector field that will be denoted by d/34. In order to
describe the emission of gravitational waves, the coordinate
variables are given as {x°, x', x°, x*} = {u, r, 8, ¢ |, where 8
and ¢ are the polar and azimuthal angles, respectively, and
is the retarded time, labeling outgoing light cones, which is
constant together with 6 and ¢ along a null geodesic. The
radial coordinate # is chosen to be the luminosity distance,
defined in such a manner that the area of the surfaces with
constant r and u is equal to 477> In this coordinate system,
the line element satisfying the vacuum field equations takes
the following form:

ds* = (Ve /r)du* + 2 e du dr
_ P [ed6 — Uduf + e~ sin> 0dg?]. (2.1)

The metric functions, ¥, U, 5, and y are functions of the
coordinate variables r, u, and 8 and the condition that the
solution be truly isolated requires that the functions be regu-
lar everywhere; in particular on the polar axis (6 = 0,7), i.e.,

V, B, (U/sin@),and (y/sin’ §) (2.2)

are regular functions of cos fat cos 6 = + 1.

The known solutions of the field equations which exist
and obey the regularity conditions are the static, asymptoti-
cally flat, Weyl class of solutions. Known radiative solutions
which can be explicitly given in terms of analytic functions
are singular on the axis of symmetry and therefore cannot be
considered as representing truly isolated systems. The best
examples of exact solutions which represent radiative sys-
tems with known sources are the boost-rotation symmetric
solutions,* which include the Bonnor-Swaminarayan solu-
tion® and the C-metric.® Physically speaking, the extra boost
symmetry requires that the sources undergo uniformly ac-
celerated motion along the polar axis. This may result, for
example, from introducing stresses which extend to infinity
along the axis or from locating an infinitely large mass infi-
nitely far away. Uniform acceleration is clearly an unphysi-
cal situation if it exists for all time. Hence solutions of such a
nature are not considered to be permanently isolated. There-
fore, in what follows, it will be required that the conditions
(2.2) must be satisfied for all retarded times u.

Even for the case of axial symmetry, the field equations
are extremely complicated, and since no exact time-depen-
dent asymptotically flat solutions are known, one assumes
that the metric functions may be expanded in terms of a
series in powers of 7~ and the vacuum field equations are
then employed to determine the precise form of the develop-
ment in terms of certain functions of integration:
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y=cu,0)r '+ [Clu,0)— ] r>
+Gu,8)r*+0(r 3, (2.3)

B= —1r?+0(r %, (2.4)
= —(cy+2ccotf)r 2+ [2N(u, 6) + 3cc,
+4c?cot01r 3 +0(r *, (2.5)
V=r—2M(u,0)+ [N, +Ncot0 —c% —4c, ccotd
—3P(1+8cot?8)]r ' +0(r ), (2.6)
and where
4C, = 2%, +2cM + Ncot & — N, (2.7a)
—4G,=C,, +C, cot 0 +2C(1 —2cot’ 9)
—2(eN), — 6¢N cot 6. (2.7b)

Here commas denote partial differentiation with respect to
the appropriate coordinate variable. The three arbitrary
functions of integration c(u, 6), M (u, 6), and N(u, ) are
connected by the following relations derived from the field
equations:

My,= —c% 4 }cy + 3¢, cot 0 —20),, (2.8)
— 3Ny =M, +3ccy, +4ccocot@+coc,.  (2.9)

The structure of the field equations is such that the
asymptotic initial value problem is posed in the following
manner: it is necessary to give {7, & ) on an outgoing null cone
defined by u# = const. Along a timelike cylinder located far
from the sources (in the limit » — <o) one must give c(u, 8),
and at the intersection of the light cone with the cylinder, the
angular dependence of M and N is given. Since the informa-
tion concerning the changes in the field is governed by
c(u, ), the name “news function” is normally given to the
time derivative of this particular function. The function
c(u, @) is normally calied the asymptotic shear, M (u, &) the
“mass aspect,” and the other functions N,C, G, etc. will be
called the “multipole aspects” for reasons which will be evi-
dent later in this discussion. Recently Friedrich? has demon-
strated that analytic initial data posed on a light cone where
u is finite does in fact lead to a convergent Bondi type expan-
sion. Since c(z, §) must vanish on the axis like sin” 8, one
introduces, in order to facilitate the calculations that are to
follow,; the change of variable uz = cos 6 and the function
glu, p) defined such that

cu, 0) _ clu,p)
sinf6  1—u?

Using these definitions the “Bondi supplementary con-
ditions” [Egs. (2.8) and (2.9)] may be written as

8lu, p) = (2.10)

A{: — &1 — p?P + 4 (1 — p??1", (2.11)
3IN=(1—p?)'"*[M" + (3gg' + &&')1 — u?)
— 12ggp(1 — p?)]. (2.12)

Hereafter in this work the symbol dot () and prime (') will
denote partial differentiation with respect to the variables u
and u, respectively.

In general the three functions g, M, and N will depend
in a rather complicated manner upon # and g, and their
physical significance will be rather obscure owing to the lack
of knowledge of the behavior of the sources. However when
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the system is time independent, the new free Bondi metric
may be compared with the asymptotically flat static solu-
tions of the Weyl-Levi-Civita class. The only Weyl solution
known to have an exact counterpart in the Bondi system is
the Schwarzschild solution, the others being determined as
an expansion in 7~ ! where the coefficients are given in terms
of multipole moments. If m, D, Q, and P are the monopole,
dipole, quadrupole, and octopole moments, respectively, of a
static axially symmetric distribution of energy defined such
that all multipole moments higher than monopole vanish for
the Schwarzschild solution, then the relationships between
the first four moments occurring in the general Weyl solu-
tion and the Bondi functions are the following:

M=m, N=(1-p)"%D+mF),

C=(1—p*lQ + DF’ + ym(F'Y],

4G =(1—p) (P~ m*D)p + (mQ — D?)
—1Q [F"(1 —p?) — 6F'u]
— F'D[F"(1 —u?) —3F 'u]
—ym{F"PIF"(1 — p?) — 2F 'u},

(2.13)

where F (1) is an arbitrary function of . These are the most
general news free static relationships that may occur. In this
case g is independent of # and the asymptotic shear g = g()
is determined from a function F (1) by

glu)= —iF".

Since the Wey!l multipole moments are simply con-
stants, (2.13) demonstrates that the “mass aspect” M (u, u), in
the static case, is independent not only of « but of 1 as well; it
being exactly the mass monopole term. The higher-order
Bondi functions are, in the time-independent case, seen to be
closely related to the respective higher-order muitipole mo-
ments.

The function F (i) expresses what is known as the super-
translation freedom that exists in defining the outgoing light
cones by the parameterization u, i.e.,

i=u+F)

The Bondi functions are determined (in the static case) exact-
ly by the Weyl multipoles when F {iz) = const. In other words
a simple renumbering of the light cones does not affect the
Bondi form of the Weyl metric. The condition that the static
solution be free of asymptotic shear is expressed by the fact
that g(u) vanishes, in which case Fis an arbitrary linear func-
tion of u.

In the general time-dependent situation, the simple re-
lationships (2.13) can no longer be fulfilled and one must
integrate the evolution equations (2.712.9) with respect to
time in order to determine the precise values of the higher-
order Bondi functions. The hierarchy of these equations is
such that the evolution of each multipole aspect depends
only upon the lower-order functions and that a specific solu-
tion up to order  ~ " is determined by the values that the 7-
pole aspects take on the initial light cone.

One now defines the Bondi mass as the average, over the
sphere, of the mass aspect,

(2.14)

(2.15)
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- 1
m(u)E—-l—J- M(u,8)sin 0d6 = —I'J- M(u, p)du,
2 b 2 /-1
(2.16)

and this may be thought of as representing the total mass of
the system as a function of the retarded time; an interpreta-
tion that is obvious when the system is static. Combining
expression (2.16) with that of (2.11) and maintaining the re-
gularity conditions, one obtains the well-known result that
the Bondi mass is a monotonically decreasing function of the
retarded time since the second term on the right-hand side of
(2.11) vanishes when integrated over the sphere

lu) = — %f_lgz(u,mu i) dp.

Since one will eventually be interested in making a mea-
surement of the effects of the radiation emitted from a sys-
tem that undergoes a loss of its Bondi mass, the expressions
for the asymptotic Riemann tensor components must be cal-
culated. Once again employing the 1/r expansion, the non-
vanishing components (to order »~?) are found to be

(2.17)

Roozo = — Rooz3 = — Ro1o = Ropzz = Ryjzp = — Ry
= —g(l—p)r ("1 —p)”?
=3¢ — 281 —p)rt +
Roo12 = — Rypp1 = — Ropzz =Ryps;

= (1= ) P = ) — ]
Rooin = — Ry = — 2(M + gg(1 — ) r3 4l (218)

In this paper, the point of view will be taken that the
presence of nonzero coefficients appearing in the ' and
7~ 2 terms of the Riemann tensor are indications of radiative
and quasiradiative behavior, respectively. Therefore while
£+0 expresses the fact that the mass aspect is undergoing a
change, g #0 states that the Riemann tensor is able to mea-
sure the presence of radiation.

B. Axially symmetric pulsed radiation

Suppose now that there exists a system which exhibits
some radiative behavior in the time interval u, < # < u,. Dur-
ing this period of time it will be assumed that there is a
change in the mass aspect which requires also that the news
function be nonvanishing. At retarded times u<u, it will be
assumed that the system is nonradiative; a situation which
must be distinguished from one that is truly static. When a
system is in a nonradiative state, it will be assumed that fol-
lowing conditions hold:

8lu ) = glu, p) = M (u, u) = 0. (2.19)

A truly static state on the other hand requires that not
only are all of the Bondi functions independent of the time
variable but that their angular dependence take on exactly
the dependence given by comparison with the Weyl metric,
i.e., Eqs. (2.13). The physical interpretation of systems that
are nonstatic and nonradiative is a major outstanding prob-
lem. Though a system may have M = 0, that is not enough to
guarantee that N, C, G, and the other high-order functions be
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independent of u. A simple example (given originally by
Bondi et al.) is a situation where a Schwarzschild mass
moves with constant velocity along the axis of symmetry. In
such a case /¥ varies linearly with «, C is a quadratic function
of u and all higher-order functions are also dependent upon
4. Other uncommon situations can exist such as a system
that is initially radiative without a mass loss [e.g., when
u = u, = 0and g(u, ) = f(x) #*]. Such systems still present
problems concerning their physical interpretations. Com-
mencing with a static Weyl solution at # = u, has the advan-
tage that one is certain that the Bondi expansion is truly
convergent prior to the moment at which the dynamic be-
havior commences and that there are no ambiguities sur-
rounding the physical interpretation of the nonradiative
state. However this requirement may be in fact too restric-
tive and may not be able to describe a large number of inter-
esting physical situations.

If a pulse of radiation is to be produced, then for retard-
ed times later than «, conditions (2.19) must once again hold.
In addition the imposition that the final state be static re-
quires that one integrate the evolution equations over the
period of radiative behavior and that the final multipole
aspects in fact have the Weyl angular dependence. Since
there are an infinite number of these equations and there
exist no conservation laws for the coefficients appearing in
the expansion of ¥ beyond the #~* term,’ it then seems quite
improbable that a news function can be constructed which
governs the evolution between two exactly static states.

Outside of the supertranslation freedom that one has in
choosing the enumeration of the outgoing light cones, there
exists also the freedom of performing conformal transforma-
tions of the sphere to itself, i.e., that lengths can undergo a
conformal rescaling

dit = K du,
which is equivalent to performing a Lorentz transformation
where the system is given a constant velocity v, directed
along the axis of symmetry. In this case X = x7'(1 + vy),
where x = (1 — v%)'/2, and the once static Bondi functions
defined by choosing a particular F(z) become
g=xg(l+op) "= — IxF"(u)(l +ou)”,
M=mx*(1 + o),

1/2
x3(D+mF’— muu )
14+ vu

fo (4
(1 + o)

In this case one can easily interpret a particular nonstatic,
nonradiative situation: that for which a nondynamic system
moves with constant velocity along the polar axis. Clearly
the angular dependence of M is not the Weyl dependence
and integration of (2.12) yields a linear time dependence for
N which in turn would lead to a quadratic time dependence
for C(u, u), etc. More general cases have been discussed by
Bondi et al.! and Bonnor and Rotenberg® where the first few
Bondi functions do in fact obey the Weyl conditions initially
and finally, but where at some higher order the functions
exhibit a time dependence. How one would distinguish
between fields which represent radiative “tails” or radiation
reaction forces acting upon the higher-order multipoles
without information concerning the actual source behavior

(2.20)
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is in itself a very difficult question and, as yet, remains unan-
swered.

In order that one maintain a certain ability to give a
physical interpretation to the behavior of the gravitational
field far from the source, the conformal factor K will be cho-
sen such that initially the mass aspect is given by the mass
monopole and is therefore independent of # and 1. Since the
initial data may be freely given, it will be assumed that the
initial state of the system is exactly static and that all of the
remaining Bondi functions take on their Weyl values. There-
fore the frame is fixed to be comoving with the initially static
state, i.e., ¥, ;4 = 0.

After the pulse of radiation has occurred, the mass
monopole part may be left with a finite velocity v, with re-
spect to the frame fixed to the initially static configuration.
In this case the total change in the mass aspect will be given
b

’ AM, o0 = mlu)(1 — v 2(1 + v, )72 — mlug). (2.21)
A very special situation would be that for which no “total
radiation reaction force” occurs and the final expression for
the mass aspect is also independent of . In that case the total
change in the mass aspect is equal to the total change in the
Bondi mass

AMtotal = Amtotal (222)

and integrating Egs. (2.11) and (2.17) throughout the interval
during which the radiative behavior occurs yields the follow-
ing relationship:

- f " & dull — iy +% [(gluy) — glua(1 — 1"

1 1,
-1 f (1 — w2 du du. (2.23)
2 — 1 Ju,

It is this equation which will be used for the remainder

of this paper in order to determine an expression for g(u, i)

that will serve as the starting point for constructing a space-

time which should yield a description of the gravitational
radiation emitted from a permanently isolated system.

lil. CONSTRUCTION OF THE NEWS FUNCTION

The problem of constructing an axially symmetric
space-time that is truly isolated and, hopefully, significant
physically resides in the determination of a function g{u, y)
which is regular and governs the dynamic evolution between
two nonradiative states that has associated with it a finite
loss of the Bondi mass. While g(u, ) represents the part of
the data which is freely specifiable, a random choice for this
function normally leads to changes in the mass aspect that
defy any physically significant interpretation. Even if one
imposes the restrictions (2.19) there exist still many choices
for g{u, u), but the regularity conditions along with the con-
dition that the transition obey Eq. (2.23) seem to place severe
restrictions on g(u, 1), so much so that there has been a rath-
er long history of failed attempts to construct such a news
function. The fact that a finite mass loss seems to imply some
sort of physically realizable system has been perhaps the
greatest motivation behind such attempts.

Before discussing how one may in fact construct such
an expression for g(u, i), a brief review of the methods which
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have already been employed previously is perhaps in order.
Historically, the first attempts to construct an axisymmetric
news function obeying Eq. (2.22) appeared in the original
paper by Bondi et al., where the general form

g p)= 3 fule) ol R

was employed. Expressions for f, (¢) and 4, (u) were found
only to order n = 2 after which the equations became too
unwieldly to handle comfortably. Next Bonner and Roten-
berg® using a double series expansion, tried constructing an
expression similar to (3.1). They analyzed a system which, to
the order considered, initially could be described by a
Schwarzschild solution with g = 0 and, which after under-
going a period of radiative behavior became another
Schwarzschild solution (again with g = 0) though the final
mass was found to undergo a finite constant velocity motion
due to “radiation reaction.” As in the Bondi attempt only
terms to the second order were considered since the equa-
tions quickly became very complicated with increasingly
higher iterations.

Employing the fact that the boost-rotation symmetric
solutions could be considered as radiating systems, Bicak®
who analyzed the Bonner-Swaminarayan solution and Kin-
nersley and Walker® who analyzed the C-metric used asymp-
totic methods for determining certain radiative properties.
More recently” it has been shown that a generalization of
these metrics yields a news function which takes on the form

glu, p) = H (u, /(1 — )21 — p?) 72, (3.2)
where H is a general function of the argument u (1 — p?)~ '/
and u, is the flat space retarded time u, = ¢ — r. Though the
boost-rotation symmetric solutions are the best examples of
an exact radiating solution with known source distributions,
the irregularity on the axis causes the Bondi mass to diverge
and nothing can be said about a total mass loss since in a
physical sense energy must be continuously added to the
system to maintain the constant acceleration of the “parti-
cle” sources.

In order to make some link between source motions and
the dynamics of the fields at null infinity the formal pertur-
bation procedures alluded to in the Introduction have been
used to determine the news function to within a certain order
determined by a small expansion parameter. For problems
dealing specifically with axial symmetry, D’Eath® analyzed
the problem of a two-black-hole collision where the velocity
of each was close to the velocity of light and Cooperstock
and Hobill'® analyzed the problem of a two-body collision
which began from rest. The expressions for the news func-
tion in both cases however, exhibit an irregular nature on the
axis of symmetry. Indeed outside of questions of conver-
gence, the known approximation methods seem unable to
provide enough information for the construction of a news
function which obeys the necessary requirements that the
system be perfectly isolated. Bonnor and Rotenberg had is-
sued a warning against the use of such a technique in saying
“that to start [the Bondi expansion] off one needs to have
more information than is available from the linear approxi-
mation. This is because the news function which generates
the solution, contains nonlinear terms which one does not
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know from the start. It is therefore not clear how given a
particular physical system one can put the method into oper-
ation.”

Thus, while the Bondi method is attractive in that it
provides “‘exact” information concerning a radiating system
and can lead to a convergent series solution, it is not a cure
for the maladies associated with the perturbation methods in
current use which begin from a linearization of the field
equations.

Finally mention must be made of the work of Papape-
trou'! and Hallidy and Janis'? who consider the problem of
axially symmetric transitions between two static states and
the ability to remove the radiation “tails.”” Both considered,
essentially, a function g(u, 1) given by the expansion

o) = 3 ail)[ 2]

=2

(3.3)

where the coefficients a,(u) are functions of u in the general
case and reduce to constants when the system is static. The
functions P, () are the Legendre polynomials. It was demon-
strated in both papers that no possible solutions could exist
which both satisfied (2.22) and had a finite number of terms
in the expansion. One could not therefore arrive at any news
function giving a finite mass loss by truncating the expres-
sion (3.3). If a transition betwen two static states was re-
quired then a closed form expression for g{u, 1) would be
needed, should one exist.

With these previous attempts in mind, and since there
are no general techniques by which one may find solutions to
an equation such as (2.23), one must resort to a method
where a particular form for the time dependence of glu, ) is
assumed together with a number of arbitrary functions of i
that are to be determined from evaluating the left-hand side
of (2.23) and from applying the regularity conditions. The
regularity of g{u, u) is important as it allows an unambiguous
determination of the total mass loss. Since M (u, y) is as-
sumed to be independent of u and ¢ both initially and finally,
an evaluation of its total change on any generator of null
infinity, i.e., for any g = const in this case, will yield the
same expression for the total change of the Bondi mass. Ex-
panding the second term on the left-hand side of Eq. (2.23)
yields

_rl & du(l —p?) + %(Ag)"(l — 1 — 44g)(1 —p?)

+2(3u® — 1)(4g) =AM guar. (3-4)

Evaluating this expression on theaxisaty = + 1yields
a very simple expression for the total mass loss,

Amyy, =4[ gu,p= £1)—glupp= £1), (3.5)
and one has that, on the axis, the initial and final values of the
function g(u, ) must differ in order to give a nonzero mass
loss. Due to the fact that m is a monotonically decreasing
function of retarded time, the function g must demonstrate a
certain asymmetry with respect to time, i.e.,

Bluop p= £ 1)>glu,p= +1), (3.6)
which is a relationship which will hold in general (except

perhaps in a few isolated directions). Using the fact that one
can always, via the use of a supertranslation, put a stationary
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system into a coordinate frame that is shear-free, some auth-
ors have attempted to determine a news function giving an
axially symmetric pulse of radiation between two static
states, both of which are shear-free. If one is to use the same
frame for the description of the complete evolution this is not
at all possible. Nor can one define then a system of “good
cuts” for the light cones, i.e., one obeying the equation
F" = 0; for in that case there will be no mass loss and hence
no radiation.

Since the sum of the terms on the left-hand side of Eq.
(2.23) must be independent of i, the simplest choice of news
function would be one which might make each term individ-
ually independent of z. That this choice must be immediate-
ly ruled out is demonstrated by the following: suppose both
terms on the lhs of {2.23) are independent of z, then

([ glegy p2) — gluy, w))(1 — p??}” =0,
which leads to either

(@) glug, ) =gluy, p)
or

(b) Agl) = (ky p + ko)/(1 — p*,
where k, and k, are constants.

The requirement that the mass loss be nonzero rules out
(a) while the regularity conditions are in contradiction to (b).
Therefore in order that the two terms on the Ihs of Eq. (2.23)
yield an expression independent of g, the dependence of
glu, ) on u must be of a more complicated nature.

The assumption that the solution initially be exactly a
Weyl solution requires not only that the conditions (2.19)
hold but also that the time derivatives of all orders of g{u, 1)
vanish at u, and therefore the time-dependent functions ap-
pearing in the asymptotic shear must be of class C . This
has the effect of pushing the initial light cone u = u,, to the
limit 4, — — oo and the initial static state is an asymptotic
state in the infinite past, otherwise a system which is truly
static up to a finite time must have discontinuous time de-
rivatives at some finite order. In a similar manner a final
static state requires the vanishing of all time derivatives
g(u, u) after the period of radiative behavior, and this must
occur in the infinite future. The period of radiative behavior
then becomes — « < u < o which puts one outside of the
domain of the convergence criteria of Freidrich. In addition
the values of M and N must be given at the intersection of
past null infinity with future null infinity. When the mass
term is nonvanishing one is confronted with the unsolved
problem of being able to “connect” the two null infinities.

In spite of this important theoretical problem, it will be
demonstrated that there does exist at least one expression for
g whose time derivatives to all orders vanish initially and
finally. This expression also yields a total change in the mass
aspect which is finite and independent of the angular coordi-
nates.

A general expression for the asymptotic shear that is
able to satisfy both the requirement that

tim 2 glu, u) =0,

u— o Ju”

and the inequality (3.6) is given by the rational function
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g, p)= (fre™ + )/ fre*+ /7, 3.7

where p, v, 77 are rational constants obeying the relation
n <vp and f, () (n = 1,2,3,4) are functions of £ to be deter-
mined by Eq. (2.23). For g to be defined everywhere, f, and f,
must not vanish (or become infinite) for any value of u. Oth-
erwise as the exponential function becomes infinite {or van-
ishes) the function g becomes undefined when the limits with
respect to u and u are interchanged. Finally, one requires
that the functions f, all be real, since there do exist cases
where a finite mass loss can lead to f,,’s which are imaginary.
This occurs, for example, when 7 = v and p>1.

Even at this time there still remains a large degree of
arbitrariness, particularly with the choice of the constants
appearing in the exponential arguments, and without any
further simplification, the expression (3.7) and its first time
derivative when introduced into Eq. (2.23) result in long re-
cursion formulas involving a large amount of algebra. There-
fore the following procedure will be employed: 7 and v will
be given a particular relationship (which in turn places limits
on p) then Eq. (2.23) will be evaluated, and the f, ’s and p will
finally be chosen so as to satisfy the restrictions that have
been already imposed on the metric functions g(«, ) and
M (u, p).

Therefore after choosing v = 2% and determining the
integral f _ ¢* du one obtains

> 1 fi 2pf§]
du =
ng “ "{2(2p+1) AL

p—1) 1] ohbstay ” (3.8)

(4p — 1) (40 + 1)

where

(4p — 3N T
22 20+ WAV*TY VAS

The choice p = 1 has a number of advantages. Firstly it
eliminates the factors of 7 which would otherwise appear in
the total mass loss, and it is the only choice for p < 8 which
yields real functions of u. Finally it simplifies many of the
algebraic expressions that appear in subsequent calculations.
Note that with this choice of constants, and with a proper
choice of the £, ’s, one can have that g( o, ) = 0, which per-
mits the possibility of attaining the Schwarzschild solution
as a final state should one be able to arrive at a truly static
system in the infinite future. This may be seen from the fact
that the Schwarzschild metric in Bondi coordinates is given
by V=r—2m, U=y =p=0, where m is the Schwarzs-
child mass parameter.

The following expression for the total mass loss can
now be obtained:

12p+l =

P fﬂ}+ fi( ©)
16—l
+2[ﬁ.(1 p)]. (3.9)

Now in the limit ¥ — — oo the function g — f,/f,, and
by (2.2) this ratio must be a regular functionof g asu — + 1.
Define 4 (u) as

A W) =Lf/fs (3.10)
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The functions f;(z) and f,(1) as well as 4 (1) must be
nonzero, and from (3.10) one has that the term (f3/
f(1 — 1% is equal to the product of a regular nonzero
function of 4 with a fourth-order polynomial of z2. This prop-
erty will also be assumed for the product of £%/( f, f,) with
(1 — x> That is,

(FALN — p?) = B2p)1 + ku + Iu® + pp® + qu?),

(3.11)
where the coefficient of u° has been absorbed into the func-
tion B (1) which is regular on the axis.

The expressions (3.10) and (3.11) are now inserted into
(3.9) and (2.23) and one obtains the following system of equa-
tions by equating the coefficients of the various powers of u:

(n/6)[gB*+24%+A4"/2=0, (3.12)
(n/6)[pB*] + 44" =0, (3.13)
(7/6)[IB* —44%] + 64— 4" =0, (3.14)
(n/6)[kB*] — 44" =0, (3.15)

(/6B +24% + A" /2 — 24

A

U +A" — )’ +44'u
2J-1 2

+ %[32+2A2]]dp, (3.16)
where Egs. (3.12)(3.15) have been used to simplify the inte-
grand appearing in Eq. (3.16). Note that had the expression
(3.11) involved a polynomial of order less than 4, then all of
the numerical coefficients would vanish, thereby yielding
AM=0.

Immediately from Egs. (3.13) and (3.15) one obtains the
relation

p= —k (3.17)
while Egs. (3.12) and (3.14) yield
(n/6)[(2g + 1) B*] = — 64. (3.18)

Differentiating this last equation with respect to u gives an
expression for 4 ' which together with Eq. (3.13) yields a sim-
ple first-order differential equation for B with the solution

Bu)=m;, exp[3(P/(2g + 1)) u], (3-19)

where m,, is an arbitrary constant, that in geometric units,
has units of length. From this expression and (3.19) one easi-
ly determines the function A4 (u):

Alg)= — (1/36) mi(2q + 1) exp[IP /2 + )] (3.20)

Now the total change in the Bondi mass can be deter-
mined by Eq. (3.5), which in turn requires that
A =1)=4{u = — 1),otherwiseone would have thesitua-
tion where the total change of M (u, 1) would be different in
the two opposing directions along the symmetry axis. This
then requires that p = 0 and therefore k = 0. The functions
A (u) and B (u) must then be independent of y:

Buy=m,, A= —(1/36)2q+1)m}=m,,
(3.21)
where the constant m, is introduced so as to simplify the

expression for the total mass loss; for which one has simply
4m = — 4m,. Knowledge of the explicit expressions for 4
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and B allow one to calculate the integral appearing in Eq.
(2.16), and one obtains

(n/6)(m} +2m2) = — 6m,. (3.22)
Subtracting this from (3.12) and using (3.14) yields the rela-
tionship between g and /:

—g=I+1 (3.23)

In order that the constants m, and m, be real, it is
required that ¢ < 0. For ease in interpretation and in order to
keep all coefficients real and positive one defines n = — g.
Therefore, the following equations yield two relationships
between the four contants m,, m,, 77, and n:

m, = + \2/n m,, (3.24)
18n/(n + 1) = pm,. (3.25)
Equations (3.10) and (3.11) therefore yield explicitly
flfs=mg, (3.26)
(1 =P f1/fo fo=my(1 + mu®)(1 — p?). (3.27)

From these equations one may now determine expres-
sions for the £, ’s. Equation (3.27), with the requirements that
/i be regular and that the functions f; and f, be nonzero,
imposes the condition that f, = (1 — u?). Therefore (3.26) re-
quires that f; = m_(1 — ). This finally leaves a certain
amount of freedom in the choice of the functions f; and f,
since one has only that

fi/f,=mi(l + nyd). (3.28)
Thus one arrives at the following expression for g(u, ) sub-

ject to the relationships (3.24) and (3.25) among the constant
parameters:

my flu) e™ + m, (1 —p?)

1 2,
e+ ao— e —mer) U™

glu, u) = [
(3.29)

where f(u) is an arbitrary function of 4 which must be every-
where regular and positive definite on the interval
— 1<u<1 and n > 0. The physical significance of m,, is im-
mediate from (3.5) as it represents one quarter of the total
mass loss. When m_ vanishes Eq. (3.24) implies that m, also
vanishes and therefore the function g(u, 1) is identically zero:
the system remains static for all time. The function g{u, u)
becomes time independent also in the limit 7 — 0 which im-
plies either m, — o or n — 0. The first situation is not well
defined physically since an infinite mass loss would also re-
quire an infinite initial mass and the second situation makes
the polynomial appearing in (3.11) be of third order in which
case one finds that all numerical coefficients vanish and
therefore once again g(u, u) is identically zero.

IV. PROPERTIES OF THE NEWS FUNCTION AND THE
MASS ASPECT

In this section a brief examination of some of the quali-
tative features associated with the news function and the
mass aspect will be made. Considering the arbitrariness of
the function f(u) appearing in (3.29) and the freedom to
choose two parameters, which will undoubtedly be lost once
certain conditions are imposed on N (¢, ) and the higher-
order Bondi functions, only certain general properties can be
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analyzed. In order to be more precise in the discussion to
follow, it will be assumed that /(i) is an even function of u
and that the condition /() >(1 + ng?)(1 — u?) holds. These
requirements do not seem to be overly restrictive since only
certain detailed features, which do not affect the general be-
havior of g(u, ) or M (u, ut) are introduced when these condi-
tions are weakened.

First, depending upon the choice of the sign of m,,, the
asymptotic shear g(u, u)(1 — ©?) is seen to undergo two dis-
tinctly different forms of evolutionary behavior except of
course on the axis where it vanishes identically for all times.
Initially, c(u, u) will have the value m,(1 — 1*) and this is
independent of the sign of m, . However, as the retarded time
increases, c(u, 1) will, in the case where m, > 0 increase to a
maximum value and then fall asymptotically to zero as
u — . For m, <0, the evolution is such that the asympto-
tic shear decreases to a minimum negative value and then
increases in order to vanish in the asymptotic future (see Fig.
1). An explicit expression for the news function is obtained
by differentiating Eq. (3.29) with respect to the retarded
time:

0 flp) e™(1 —u?)
() (1 + np?) ™ + (1 — p?)]?
X{ —my, ) ™

1 4 nu?

I U VA L —#2)J’ “
1+ np

which outside of vanishing in the asymptotic past and
asymptotic future, also vanishes at a finite retarded time de-
termined by the equation

1+n,u'2ev1]u_ f(lu) e'qu= 2ma‘
Slu)

1 —p? m,

Independently of the sign of m,, the news function re-
verses its sign once during the entire evolution, and the sign
of m, determines the sign that the news function will have
initially. The angular dependence of (4.1) also has the general
feature that not only does the amplitude of the news function
increase as one moves off of the axis of symmetry, but also

elu, p) =

32r

\ \\\ my>0

ASYMPTQTIC SHEAR
-
e

u, RETARDED TIME

FIG. 1. A plot of the time dependence of the asymptotic shear on the equa-
torial plane (u = 0) for m, = 27 and n = 3. The evolution undergoes two
distinct forms of behavior depending upon the choice for the sign of m, in

Eq. (3.24).

David W. Hobill 3534



the time at which the news function reverses its sign in-
creases as O increases from zero to #/2. This behavior is
shown in Fig. 2. For m, > 0 the time at which the sign rever-
sal occurs never exceeds u = 0, whereas for m, <0 this time
is also bounded but that bound may be either negative or
positive depending upon the value of n.

It is of interest to compare the behavior of the news
function (4.1) with certain axisymmetric dynamic space-
times involving zero impact parameter collisions particular-
ly the two black hole collision problem considered by
D’Eath® who analyzed the case where the two bodies ap-
proach each other with nearly the velocity of light. Using a
perturbation calculation, he was able to obtain an expression
for the leading term of the news function at angles close to
the forward direction, § = 0. The behavior of the news func-
tion calculated by D’Eath is similar to the behavior of (4.1)
for the case m, <0, i.e., the amplitude before sign reversal is
negative and the absolute values of the minimum and maxi-
mum increase with an increase in the angle 6 (for ~0).

Two other axisymmetric collision space-times which
show similar features are those analyzed by Davis et al.!*
who, using perturbation methods, analyzed the radiation
from a small particle falling radially into a Schwarzschild
black hole and by Smarr!* who, employing a numerical com-
putation, studied the head-on collision of two equal-mass
black holes. Qualitatively the radiative part of the metric
which determines the mass loss in the two examples above,
demonstrate (modulo the “ringing tails” associated with the
normal mode vibrations of the final black hole) the same
behavior as the news functions determined by D’Eath and
that of Eq. (4.1). Despite these similarities however, the
sources and their motions which lead to the news function
(4.1) must be considered to be unknown at the present time.

The expression for g{u, 1) also allows the initial and
final values of F (1) to be determined. In the asymptotic past
and future one has

lim glu, u)=m,,

U— —

which implies
F_ ()= —m, g + K, pt + K,
and

NEWS FUNCTION

u, RETARDED TIME

FIG. 2. A plot of the time dependence of the news function for various
values of cos 6 (u = 1 on the axis of symmetry). The parameters m, and n
are the same as those for Fig. 1 and m, is positive.
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lim gu,p)=0,

u— oo

which implies
Fm(ﬂ) =c’ll‘t +C2,

where c,, ¢,, K, K, are constants. The coordinates system is
now determined up to a linear function of z. While the re-
quirements placed upon the total change of the mass aspect
will not impose any new conditions on the functions,
F _ (u), one sees that Eqs. (2.13) will determine the con-
stants ¢, and , if the functions ¥ (u, ) and C (u, 1), etc., are
to take on their Weyl expressions at the end of the evolution.
All that will be left then as a coordinate freedom would be
the liberty to renumber the light cones, u = const, which
would have no effect on any of the expressions that deter-
mine the total change of the Bondi functions.

A determination of the numerical coefficient associated
with the Bondi mass loss would require an explicit knowl-
edge of the function f{g), but one can determine the exact
behavior of the mass aspect by integrating Eq. (2.11) with
respect to retarded time over the interval — oo <u<u:

M(u,m=M<—oo)—(1—y2>2f_ (4, u) i

— 41 glu, p)(1 — 1" +23u” — 1) m,,.
(4.2)
After a rather straightforward but tedious calculation one
obtains

My, p)=M(— o) —4m, + (fTV:_)T‘::‘ +(1—#2))_

X [4ma(l — 1P+ 121 Hu) e”"‘] , (4.3)

where the explicit expressions for the functions H,(u)
{I=1—15) are given in the Appendix. Clearly the simple
relationship that exists between the Bondi mass and the mass
aspect when the system is static is lost once the system be-
comes time dependent and the nonlinearities of Einstein’s
equations are taken into account.

Knowing explicitly the function g(u, 1) and M (u, u) al-
lows one to calculate all terms in the Riemann tensor to
order 73, The mass aspect is then a quantity that can be
measured and therefore its behavior with respect to time is
important. In the asymptotically distant past the mass as-
pect is simply given by the value M ( — o) since the term
— 4m,, is canceled by the first term appearing in the square
brackets as ¥« — — o0. As 4 — o the last term in (4.3) van-
ishes and once again the mass aspect is independent of u;
being smaller than its initial value by the amount 4m,. From
Eqgs. (A1}){A5) one sees that during much of the evolution
the changes in the mass aspect occur at angles predominant-
ly transverse to the symmetry axis. Only at late times in the
evolution when the coefficients of ¢*7* begin to exert their
greatest effect will there be any significant changes of M on
the axis. Choosing m,, > 0, the time at which the mass aspect
undergoes a collapse on the axis equal to one half the total
mass loss is found to be

2
1 8r+])

u, = —
27 nffe=t1)

<
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whereas, the greatest loss of the Bondi mass will occur as a
burst, at a time approximately centered about the time at
which the news function undergoes a time reversal (since the
amplitude of the news function is a maximum just before and
just after that time). Adding the assumptions that #>1 and
that the dominant contribution to the mass loss comes from
radiation in the equatorial (6 = 7/2) direction, the time at
which this burst of energy loss occurs is of the order

uy = —(1/29) In[2nf(u = 0)],
which clearly precedes the collapse of the mass aspect on the
axis. Most of the energy loss then would probably be due to
source motions along the axis of symmetry since the radi-
ation field in weak field regions, being of a transverse nature,
vanishes on the axis. The rapid and delayed collapse of the
mass aspect near the axis while not contributing significantly
to the energy flux must come from some unusual relativistic
effect.

Finally this section concludes with some remarks con-
cerning the nature of N (u, p). Since both M’ and g vanish
initially and finally, Eq. (2.12) shows that ¥ (¢, z) will be in-
dependent of time at the beginning and at the end of its evo-
Iution. However in order to determine the exact final angular
dependence of N, Eq. (2.12) must be integrated with respect
tou. If C (u, p)is tobe time independent as 4 — o« then N,
must take on its Weyl form, i.e.,

ANtotal = (1 _/‘2)1/2 [ADtota] +M( - °°)(c1 _Kl)
—dmyc, +2m,M(— o) p].

This requirement will determine further relationships
between 7, ¢, &,, m,, and M ( — ) as well as determine,
perhaps, the explicit form of f(«). Since there exist only a
limited number of parameters and one arbitrary function, it
is rather doubtful that one can insure that a// of the higher-
order multipole aspects can be put in their Weyl form as
u — oo.One would therefore expect that the final state while
not radiative will not be entirely static either, since there will
probably exist some multipole aspects that cannot be made
time independent.

V. CONCLUSION

The characteristic initial value problem has certain ad-
vantages in that it provides a beautiful hierarchy of equa-
tions that may be solved step by step once the initial data is
provided. Assuming that there exists an expansion in terms
of r~ ! simplifies the field equations and allows one to calcu-
late exact properties of the asymptotic gravitational field
without resorting to perturbation methods where certain di-
mensionless parameters must remain less than unity. The
complete evolutionary behavior of the Riemann tensor far
from the sources can then be determined even when relativis-
tic effects become dominant.

Despite the relative ease by which one can arrive at
some exact knowledge concerning the nature of gravita-
tional radiation, there do exist a number of disadvantages
associated with the »~' expansion, notably the inability to
link the behavior of the gravitational field with the motions
of the sources. From the arguments presented at the end of
the previous section it seems that the Bondi formalism by
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itself is unable to establish the existence of radiative transi-
tions between two exactly stationary states. As a result the
problem of source behavior then becomes more enigmatic
since the “wave tails” which would present themselves as
time-dependent Bondi functions occurring as coefficients of
the higher-order »~ ! terms in the expansions, clearly make a
distinction between exactly stationary and more general
nonradiative systems. The existence of the tails also brings
into question the validity of the 1/r expansion since the con-
vergence of such a method may be upset, especially, if one
wishes to analyze the field for all times.

Another problem is that linked with the choice of a
“go0od” coordinate system for which a discussion of radia-
tive fields can be presented as simply as possible. This is
evident particularly in the supertranslation freedom that is
associated with the arbitrariness in the choice of the initial
shear of the null cones. If, in the problem discussed in this
work, one had set g = O initially with a particular choice of
F (u) then a negative shear would have to develop later in the
evolution in order to account for the mass loss. This might be
somewhat anti-intuitive since one would ordinarily expect
that a dynamic, axially symmetric system would in general
tend to decrease its deviation from spherical symmetry over
the period of time during which it radiates and that if the
coordinate system is properly chosen to be as nearly “spheri-
cal” as possible, the shear would be able to measure this
decrease of the deviation from spherical symmetry. Itis rath-
er satisfying that in a coordinate system chosen to match
such an evolution, that the parameter which is related to the
total mass loss appears in a self-evident manner.

Finally, the program described in this paper was begun
with the hope that the Bondi method could avoid the large
quantities of tedious algebraic computations which occur in
the known perturbation techniques. Unfortunately the
expression for g(u, u) is complicated enough that the amount
of computational work involved in calculating the higher-
order Bondi functions grows enormously with increasing or-
ders. Even at the level of calculating explicitly the time de-
pendence of the mass aspect, this fact begins to present itself.
However, there is a good deal more information hidden in
the higher-order functions. For example, a result not yet
obtained would be the relationship between m, and
M — ) which is not determined by a calculation of the
mass loss alone. This is due to the fact that information about
how the energy of a system is distributed spatially is required
in order that one can determine whether or not a system’s
total energy is positive and how much of it can be lost. There-
fore knowledge of the higher-order functions in the expan-
sion is needed. Furthermore carrying the calculation out to
include the functions N (1, 1) and C (u, 1) would allow one to
determine the Newman—Penrose conserved quantities in an
explicit manner without resorting to approximation tech-
niques.
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APPENDIX: CONTRIBUTIONS TO THE MASS ASPECT

In this appendix the explicit angular dependence of the
functions H,(u) appearing in the time-dependent mass aspect
are given. The calculation makes use of the relationship

my = (/20 [ M1+ m?) + 2m2(1 — )] (1 — 2?)
+ ym, (3 — 1),

in order to simplify some otherwise lengthy expressions.
One has then, after substituting (3.29) into (4.2),

Hp) = (my /200 — P — g f” ~4uf — 2], (A1)
ey =P e g e
)= m, S 1
omuf | (nm—1) .
1+ nu’ + ((l-f-nyz)2 ”ma)f]
2 ’ n,uf 2
4l —p )f[f - +wz] +f(17 5)],
(A2)
— (1—p% (] — 2 ne _ _4nuff”
Hy) = m, (IH#z)f[ 1 ﬂ)[3(f) o
nnp’—1) 4 2| 2p2 ,
+(——(1+nﬂz)2 : nma)f] S+ 2uf )},
(A3)

— (1—#2)f2 — 2| _ A n2
Hawy=m, S=EL i — oy [ e+ 3059

_ bnuff’ n(3nu’ + 1)]
L+np® (14 nu?y
+(1—#2)f[12#(f"‘ 1:”’{“2) + 77:”/]

£y -], (A4
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Hilp)

mbf3

fi—wr |- L= 4 iry

(L 2
_ Anuf n(3np® + 1)
T+ne? (14 nu?)
2 ’__ 2n.uf 2 _ 2
ot —f [ = ] ot - g,

(AS5)

On the axis {4 = =+ 1) the only nonvanishing contribution
comes from the last term appearing in H{u).
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There exists a construction of hyperbolic complex Lorentz frames for any signature 77. We prove
GL(4, R )tobelocally isomorphic to U (5, H ) by Lie algebra theory. Therefore, thelocal GL(4, R )
gauge symmetry of hyperbolic complex metric g in the nonsymmetric gravitational theory, in fact,
is a symmetry of rotations of the hyperbolic complex Lorentz frames.

PACS numbers: 04.50. + h, 02.40.Ky

I. INTRODUCTION

In order to solve the ghost poles problem in the non-
symmetric gravitational theory," Kunstatter, Moffat, and
Malzan? suggested a theory in which the metric g of the
space-time manifold M takes hyperbolic complex values,
and this metric should have an internal GL(4, R ) gauge sym-
metry. Concerning this gauge symmetry, the discussion in
Ref. 2 is on the basis of the fiber bundle theory,® i.e., the
theorem concerning the reduction of the structure group of a
principal fiber bundle and the existence of a cross section. In
Sec. II of this paper, we prove explicitly that GL(4, R ) is
locally isomorphic to a group of the hyperbolic complex
transformations related to any designative signature 7.
From an element 4 € GL(4, R ), the hyperbolic complex uni-
tary transformation, which corresponds to 4, can specifical-
ly be written out. Kunstatter and Yates* have given the ordi-
nary complex frames, corresponding to it, in Sec. I1I we give
the hyperbolic complex Lorentz frames. The local GL(4, R )
gauge symmetry of g, in fact, is an evident symmetry of g
concerning hyperbolic complex unitary transformations.
Therefore, it is clear that the status of GL{4, R ) in this non-
symmetric gravitational theory, indeed, completely corre-
sponds to the status of the (real) Lorentz group in general
relativity or the group U(3,1) in ordinary Einstein’s complex
metric theory of gravitation.!” Now, the specific physical
and geometric significance of this symmetry is very clear.

Il. HYPERBOLIC COMPLEX UNITARY
TRANSFORMATIONS GROUP AND GL(4, A)

Let ¥ = (V%) be a vector of the four-dimensional hyper-
bolic complex linear space Ty, its components
Ve =u%+ e, where =1, u% and +* are real,
a = 1,2,3,4. For designative signature 7, we define the norm
of ¥ by

V1P =7, V4V, (1)
where the symbol “™ is the conjugation operator Ve=u"
— &v”. A linear transformation f: T, — T, can be denoted

by a 4 X 4 hyperbolic complex matrix f = (%), and f can be
decomposed as

f=4+é€B, (2)
where 4 and B are 4 X4 real matrices. Here f is called a
“hyperbolic complex unitary transformation” (related sig-
naturen)if|| f(¥)|| = ||V ||, forany V € T, .Itis easily proved
that f'is a hyperbolic complex unitary transformation if and
only if
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AA* — BB*=1, (3)
AB¥ — B4* =0, (4)

where I is the 4 X4 unit matrix, 4 ¥ =74 Tp~', 4 T is the
transposed matrix of 4. Now, /" has the inverse transforma-
tion
fTh=aff7, (5)
where f* = f7. Therefore, all f’s form a group U(z, H).
We take U(n, H) as a 16-dimensional real manifold,

then we can consider its Lie algebra gl(n, H ). Ifa4 X 4 matrix
B =a + €bis an element of gl(n, H ), then

Bp—nBt=0. (6)

From Eq. (6) we can find all bases of gl(n, H ). For arbitrary
signature 7 the following steps of discussion are applicable.
But, in gravitational theory what usually interests us is the
case 77 = diag(l, — 1, — 1, — 1). So, we shall only discuss
this case as follows.

Let EfaB denote a 4 X4 real matrix, its gth line, vth
column element is 8,,85,, o =2& ) = & o5 + & pas
bug =28 1,5, =& .5 — &p,. Then we obtain the following
16 bases (4, d, B)ofgl(n, H). Thefirst six are just the bases of
the Lie algebra of ordinary Lorentz group: 4,, =a,,,
A3 =031, Ay =41, B3y =byy, By =byy, and By; = by,
Therestared, = €% ,,, A3, = €A3y, Ayy = €045, A4y = €ay3,
B, = €b,,, B;, = €b,,,and B, = €b,;. So, the commutation
relation among these bases can easily be written out. Now,
we consider the relation between gl(4, R ) and gl(y, H ). Six-
teen bases of gl{4, R ) are all &’s. We define a linear transfor-
mation p: gli4, R ) — gl{n, H ) by

P(gaﬂ) =1 (AaB + Baﬁ),

P& up) = 1A, — B ),

P& o) =da.

We can directly examine that p is an isomorphic mapping
from gl(4, R ) to gl(n, H). Therefore, according to the Lie
group theory, GL(4, R )isisomorphic to U(, H )astwo local
linear Lie groups. For other signatures the above discussion
can also be carried out similarly. Thus, the signature 7, in
fact, is arbitrary, i.e., every Uy, H), which corresponds to
some signature 7, is locally isomorphic to GL{4, R ).

In GL{4, R ) an element of the connected component,
which contains the unit element, can be written as

a,b,. gl R) (8)

Corresponding to A4 the hyperbolic complex unitary trans-
formation is

when a>p5,
when a <f3, (7)

A = expla)exp(d)---,
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S =exp| pla)lexp(p(b)) - - - . )
Therefore, the effect of GL(4, R ) gauge transformation of an
element, in fact, can be explained as the effect of a hyperbolic
complex unitary transformation.

11l. HYPERBOLIC COMPLEX LORENTZ FRAMES

Wetake GL(4, R )as thelocal transformation group act-
ing on M. Equations (8) and (9) mean that there is a hyperbo-
lic complex Lorentz frames bundle L, (M ) (related to some
). IV =1{V,} e Ly(M),a=1,2,3,4, and we let the matrix
(V) be the inverse matrix of ( V), then

vavi=8,, ViVe=8". (10)
If ¥ (x) is a cross section of L, (M ), and a metric g is defined
by

gpvznabVZV[;’ (11)
then g obviously is invariable under a local hyperbolic com-
plex unitary gauge transformation of V. Conversely, if a lo-
cal GL(4, R ) gauge symmetric metric g exists, then we can
prove that there is a V(x) e L, (M) and Eq. (11) holds. In

fact, according to Ref. 2, there exists now a real metric g’.
For the tangent space 7', at each point x € M we have

g4’ B)= —g(EA",B'), VYA, BeT.=T,xT.,,

(12)

g4, B)=g'4’,B’)+ €g'(EA', B’), (13)
0 I
E:[I o]’

where 4 =(4'"+ €4 e, and real {e,] spans T,
@ = a + 4. Equation (12) means that g’ corresponds to the
signature H = (7, — 77). Now, on M there is an ordinary real
Lorentz frame {V,} (4 = 1,2,...,8),

VAVE=ot, ViEVI=6

(r,4=12,..,8),
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and
grs =HaVAVE=H,VEVI+VEVY).  (14)

Let ¥V, = (V'® + €V ;%)e,, then we can directly see that Eq.
{10) holds for H = (5, — 17}, and

8 =8V, V) =gV, V) +eEV,, V)
=H VWV +elH, ViV +HzV Vi)
=N ViV (15)

IV. CONCLUSIONS AND DISCUSSIONS

GL{4, R)is locally isomorphic to a hyperbolic complex
unitary group related to any signature 5. The GL(4, R)
gauge symmetry of the nonsymmetric metric g can be ex-
plained as the symmetry of g related to the hyperbolic com-
plex unitary group. There are hyperbolic complex Lorentz
frames, the relation between g and these frames is just a di-
rect extension of the relation between a Riemann metric and
the ordinary Lorentz frames.

If € = 0, we, of course, obtain the theory of Riemann
metric and Lorentz frames.

Ife?= — 1, theng changes into an ordinary Einstein
complex metric. When = diag (1, — 1, — 1, — 1), the local
gauge group is U(3,1). Although we can also write out the
transformation p, now p is not an isomorphic mapping of
two Lie algebras, i.e., U(3,1) and GL(4, R ) are not locally
isomorphic. This makes an essential distinction between an
ordinary complex metric theory of gravitation and the hy-
perbolic complex theory of gravitation.
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We have obtained the generating function for Chew—Mandelstam functions for arbitrary integral
angular momentum. From this a closed formula for the Chew—Mandelstam functions is derived
in both the simple equal mass case and in the more complicated case of unequal masses.
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I. INTRODUCTION

There exists a variety of approximate representations of
the S matrix. In this paper we look at the K matrix approxi-
mation for the multichannel scattering matrix .#,(s) in the
I th partial wave'™:

F1=1+42ip/*Tip;”,
where

T, =K(s)(1 = Cs)K ()"

(1.1)

(1.2)
and

p=ImC, (1.3)

is adiagonal matrix of two-body phase-space factors. X (s)isa
real, symmetric matrix whose elements are meromorphic
functions of s, the invariant squared energy. At threshold

pro<(2k/\s) - k2, (1.4)

where &k is the center-of-mass three-momentum,
k?=(s—a)ls—b)/4s and the convenient abbreviations
a = (m, + my)? b = (m, — m,)* have been introduced. The
functions C,; will be assumed to satisfy the dispersion rela-
tion

Re C,(s) = —S—J ds’ M
T Ja s'ls’ —s)
We wish to focus on the Chew—Mandelstam functions
singled out for extensive application for Edwards and Thom-
as.? These they define by setting

- (2)(2) s

which satisfies both the threshold requirement Eq. (1.4) and
allows the C, to obey the once-subtracted dispersion relation
Eq. (1.5) via Eq. (1.3). This choice of p, is more general than it
first appears, incorporating the correct threshold behavior
and also allowing for approximations to be made to the left-
hand singularities by choice of the meromorphic elements of
the K matrix.
Assume, contrary to Eq. (1.6), that

p; =1Im C, = (2k /\s)2k /b, (1.7)

where b is a real constant. p, satisfies the threshold require-
ments. C,(s) obeys an / + 1th subtracted dispersion relation

(1.5)

(1.6)
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C/ls) = 21 Cios” s

o n! T

10 as'(2k /s 2k /b)Y

s s — s — ie)
(1.8)

where the / + 1 subtraction constants C 7(0) are the nth de-
rivatives of Cj(s) at s = 0.
This may be written in the more revealing form

Cls) = Pils) + (s'/62)C,(s)

and

(1.9)

s (ds2k AP

—. (1.10)
T s'(s — s — ie)

Cils) =
P,(s) is an / th degree polynomial in s, and C,(s) are precisely
the Chew—Mandelstam functions as defined by Eq. (1.6).

The unknown polynomial coefficients may be absorbed
into the K matrix elements so that the .S matrix may be writ-
ten in X matrix form either with the functions as here defined
by Eq. (1.7) or in terms of the Chew—Mandelstam functions
as Edwards and Thomas do. We conclude that the Chew-
Mandelstam functions may appear even if the ansatz Eq.
(1.6) is not imposed.

By contrast both Cutkosky e al.®> and Térnqvist® use
model-dependent modifications of p, : in the first case to sim-
ulate left-hand cut structure with parameter-dependent
terms in p,, in the latter case by the addition of parameter-
dependent damping factors to enable the modified C, to sa-
tisfy a once-subtracted dispersion relation.

Although Edwards and Thomas gave explicit forms for
the C, for small /, no general expression was written down. In
this paper we exhibit a useful closed form for these functions.
We proceed in two stages. First, we find the generating func-
tion C (s, z) for the functions C,(s). This is defined by the for-
mal power series expansion in z

Cls,2) = 120 C,(s)2.

Having found C (s, z), we use it to obtain a closed form for the
C,(5).

(1.11)

Il. THE GENERATING FUNCTION

From Eqgs. (1.5) and (1.7) we see that C (s, z) satisfies the
same once subtracted dispersion relation as the C,(s), namely

®© 1984 American Institute of Physics 3540



Re Cls, z)———f !EI—SC;(j—S)?l (2.1)
Further,
& f 2k N+ 2k 4k?z\~
ImCs, z) = ZO(W) 2= 1,’2(1 - Z)
- (2.2)
Hence
_ s . l5—a)s —b) 1
Cloa)= vL as (s —s—ie) (s —a)/% s —b )”2(}2’(3’)) ’
where
Pisy=(1 —2z)s* +z(a + b )s — zab. (2.4)
At this point we remark that
—aly =b) o g pyq alE=b)
(8 —s) (s —5) 2.5

It has proven most convenient to split the integration in Eq.
(2.3) into three parts in the fashion suggested by Eq. (2.5).
Then the integrations can all be done in terms of elementary
functions’ (for details see Appendix A} and we obtain

Cls,2) =1, + I, + I, (2.6)
C (S) = Il’ 1 +12!l +I3’I’ (27)
2k 4ic3z\~
L= ”2(1 sz)
(s__a)l/z + (S_b)llz .
x[ 21n( 2(mm)”2 )+m}, 2.8
1 4k 2z 1-}—2”2
B e
_1 4k’z\"'fa+b ab\ Q 1+Q
h_ﬂ(l p ) ( 2 s/a+b)m,L—Q’
(2.10)
where
_la+d)( zla— b\~
o 5 \ab+ 2 ) . (2.11

Note that C (s, 0) correctly reproduces the expression for the
S wave Chew—Mandelstam function Cys) given in Basde-
vant and Berger. In general one has from Eq. (1.7)

1d 'Cls, 2)

nodZ
However, it is not necessarily trivial to find from Eqgs. (2.8)-
(2.12) the explicit expressions for C,(s). The three parts I, I,
I, differ very considerably in the ease with which they yield

up the closed expressions. For example, we can write almost
immediately

2 2k 20+ 1 (S
no=={im)

2k 21+1
o Z)
(2.13)

On the other hand I, and 7, require more discussion which
we defer to the next section. We give separate treatment for

C,ls) = =0. (2.12)

_ a)l/z + (S _ b)IIZ)
2(mm,)'/?
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the equal and unequal mass cases.
Iil. THE CLOSED EXPRESSIONS

A. The equal mass case:my=mp=m
In this case matters simplify remarkably because Q re-

duces to z~'/2, whence I, = I, and
Cls,2)=1I, + 21, (3.1)
2k 42z \ 1
Cls,2)= 1/2(1— - )
AmV/2 4 12
x| -2m(EE ) ]
2 4k 3z 14212
+;(1—~ . ) 221/21 ’ 7| (3.2)

To simplify notation now and later let us introduce the ab-
breviations:

4k? @a—»b) a+b
A=—0 p= ; ve= 5
s 16ab 2(ab)
oy 180" (3.3)
s
Now
1422 &
221/2 1 e = 2l (3.4)

If Eq. (3.4) is multiplied by (1 — Az)~ ' and the result expand-
ed in powers of z, one finds

2 1 Al—r
2, , =— . 3.5
2= 2 (3.5)
Recalling Eq. (2.13), we finally get
Im C)(s) =A'+"7?, (3.6)
A 2)1/2 1/2
Recl(s)=_g_[_,11+1/2ln((s 4m*) "+ )
T 2m
i /1 I—r ]
+ .
,zo 2r+1
(3.7)

B. The general case: my#m,

In this case we can still use Eqs. (2.13) and (3.5) to find
1, , and I, ,, but further work is required to obtain I ,. I,
can be written as follows:

1/2
1, =188)7® pyy (3.8)
2
where
W=(1— Az, 3.9

X=20/la +b), (3.10)
Y=In|(1+Q/(1-Q) (3.11)

and Q (z) is given by Eq. (2.11). Then the nth derivatives of W,
X, Y with respect tozatz =0 are

X __ (= 1)"2"2n — "

d*w
—=nll" :
(ab)”z

dz" dz"

Y=2 ln(—m—’);
m;
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'y _ vin — 1)t "2‘ (—1¥2°(2p — 178

daz" =0 o
for n>0. (3.12)
At this point we introduce a further abbreviation:
2(n)=(—1)"2"2n — 1)li/nl (3.13)

For the detailed proof of Eq. (3.12) see Appendix B. We now
take the / th derivative of I, and using Eq. (3.12) in conjunc-
tion with Leibnitz’s rule find at last the following closed
expression for C(s) in the general case:

Im CI(S) ___/1 14172

1/2 /
Re C,(S)=i[—2/ll+mln((s_a) +(sl/—2b)l 2)
T 2(mm;)

(3.14)

] /{'l—n]

+ X

®, (m !
—1 _1) n l—n, n
n=0 2” + 1 + n( nZO (n)/{ lu

T \m,

2 U som)

IV. CONCLUSION

We have found the generating function C (s, z) for the
Chew-Mandelstam functions C;(s) used by Edwards and
Thomas. From C (s, z) we have derived a closed form for the
C,(s) in the general case of unequal masses. The advantages
of proceeding in this seemingly indirect fashion are well
known to mathematicians. As well as being elegant and giv-
ing greater power in dealing with refractory expressions, this
method may afford insights denied to a more piecemeal ap-
proach. One example of this here is the discussion of the
equal mass limit. At the level of the generating function [see
Eqgs. (2.8)-(2.10)] it is trivial to take the equal mass limit
a—4 m?, b—0. But to do this at the level of the Chew—Man-

"delstam functions themselves requires a painstaking discus-
sion of the cancellations between divergent terms [see Eq.
(3.15)].
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APPENDIX A: THE INTEGRATIONS

ReC(s,z) =~ r ds' J(s), (A1)
T Ja
where
n_ s —a)ls —b)
TI= T IR A2
and
R(s)=(s —a)s—b), (A3)

P(s)=(1 —z)s* +zla+ b)s — zab
=% —zs —a)s — b)

= s(s — 4k *z). (A4)
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Now use
(S’—f)(S’—b) St ls—a—b)+ (s—c'z)(S~b)
(5" —s) (s —s)
AS
to write )
Js)=J, +J,
_ E F+ G5
T —sR()2 T PR (49
where
E— %ﬂ (A7)
S
e p_Is—a)ls—b)( zab
F=s—a—b p Ve + 1), (A8)
G= 1— (s_a)(sp_(sl;)(l —Z)' (Ag)
Let
== f " ds' (s, (A10)
T Ja

Make the substitution t = (s' — s}~ ' and use Eq. (2.261) on
page 81 of Ref. 7 to get

2k ( 4kz\ !
h= ws'/? \1 s )
1/2 1/2
— +(s—b) .
X —21n<(s 9 >+m]. All
[ 2(m1m2)1/2 ( )
Hence Eq. (2.8) is proved.
Now look at
L=2= j ds' J,(s'). (A12)
T Ja
Make the substitution
sS=pt(1+1)",
where
B=2ab/a+b) (A13)
Then L can be brought to the form
sB - A+ Bt
= X Al4
ml—2) Jong—a (2 + )2+ )"/ A
where
3 —3/2
A= OBV da—bP1F, (ALS)
(@a—b)
B=GA/F, (A16)
x= —zl@a+b)/[la—b)yz+4ab], (A17)
y=—f{a+b¥a—b) (A18)
Break L into two parts:
L=I+1, (A19)
sB J‘_l A
I, = dt X (A20)
ol =2 Jus—a @E X2+ )V
spB -t Bt
= dr . A21)
YAl —2) Japoa 24X+ ) (
In 7, make the substitution > = — v*(¢ > + y) as suggested in

Sec. 2.25 of Ref. 7. After some elementary steps, one finally
gets
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1 4k?z1-' 1 1422

12=;[1— . 2zl’zln|1_zl/2 (A22)
and Eq. (2.9) is proved. In I, make the substitution
t? 4+ y= — u® Again after some work, one finds
7 1[1 4kzz]“‘[a+b ab] Q 1+Q
s=—|1~ — n ;

T s 2 s la+bd) 1—-Q

(A23)
where
_p21-122
Q=(“J;b)[ab+z("4b)] (A24)

and Eq. (2.10) is proved.

One might worry that C (s, z) could have singularities in
the z-plane which would invalidate the expansion around
z =0 in Eq. (1.7). Fortunately this is not so. Look at Egs.
(2.8)H42.10). 1,, I, I, all have the simple pole at

s (1—a) ' (1—b)""!
zZ= = .
4k* s 5

But s>a > b, hence the pole is always at z>1. I, has no other
singularities in z. I,, I, both have a branch point at z = 1.
Despite appearances, I, does not have a branch point at
z = 0, nor does I, have one at
_4ab  (mP—m))

@—bP 4m>m?
These are the only singularities for finite z. Therefore the
expansion (1.7) is valid.

APPENDIX B: THE RECURSION RELATIONS

Given

W=(1—4z"", (B1)

X=2Q(@+b6)"", (B2)

Y=In|(1+Q)/(1 —-Q)|, (B3)
with

_la+b) da—bP]

0= [ab+ 2 ] (B4
and

2(n)=(—1)"2"2n — 1)t/n! (BS)
one must show that

1dW_ . (B6)

n! dz"

14X _ o0

n! dzr  (ab)V'¥ (B7)

I |

Yn+1___

v[21 - 2)(1 + az)dS, /dz) + 25, [n(1 + az) + afy — n)(1 —2)] ]

n n—1
Y _V'S 0(ppr for n>0,

1 (BS)
n! dz" n p=o0

Y=21n[-’3’—1]; all at z=0. (B9)
m,

(B6) is trivial and follows at once from (B1). From (B2) one
has

X=20Q(@+b) '=(ab)" V1 +4uz]~"*  (B10)
[recall the abbreviations u, 4, v from Eq. (3.3)].
Expanding (B10) in powers of z yields
© — 1
X =(ab)~"'? > 4"z",u"( 2), (B11)
n=0 n

n . . . . .
where ( ) is the binomial coefficient. The coefficient of z”" is
r

(= 1)47u"@n — 1@b) ™% _ 2 (njp”
2" (ab)'?

and so (B7) is proved. Introduce the useful abbreviations

2n(1 _z)n+ 1(1 + (12)"+ 172

Comparison of (B14) and (B18) then proves (B15) by induc-
tion from Y. In particular, (B16) is easily established by
differentiating (B13) once. Introduce the notation for the co-
efficients of the polynomial
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Ry
a = 4u; E=———(H2_b; y=ab 5=18=8)"
y—atb_ n_ 4’y (B12)
2(ab)'? dz"
Then from (B3)
1/2
Y°=In 'B_ﬂﬂ] (B13)
B—(v+82""
Further it will be shown that for n >0,
vS,(2)
"= , (B14)
X l(l _ Z)n(l + az)n—- 172
where S, (2) satisfies the recursion rule
2dS,(2)
S,41le)= [1+ (@~ 1)z — az’]
dz
+ 5, {2n(1 —a)+a +az(d4n — 1)]]  (BIS)
with the initial conditions
S, =1, s, _ 0. (B16)
dz
Take the logarithmic derivative of Eq. (B14) to find
d 1 dS,, n a(% - n)
InY")=— + . B17
Z( ) S, dz 1~—z+l+az (B17)
Multiply (B17) by Y " to get
{B18)
—
n—1
S.2)= Y S,z (B19)
i=0

Then Eq. (B15) translates into the following recursion rule
for the S'.:
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S =2k+USE+ 4+ [2n — k) —a2(n — k) — 1)]
XSk +al22n—k)+ 1185, (B20)

where S'; is always zero for a>b. The solution to (B20) which
satisfies the initial conditions (B16) is

v _( =1 Y@n—1)Ma*2"=*=n —k—1)
S"_(n—knl) (2n — 2k — 1)1
(= 1P — e (B21)

s 27p!

Here (:) denotes the binomial coefficient and the double

factorial notation is explained in Sec. III. Equation (B21) can
then be established from (B20) by induction on n. This
lengthy algebra will not be reproduced here. From (B19} and
{B21) one has

—1
5,0)=8=2""Yn—1'S ”“’)“ (B22)
p=0
Combining this result with (B14) one ﬁnds
lY"(z= 0)=— 2 2(pp? for n>0,
n! p=0

proving Eq. (B8). Equatlon (B9) follows at one from putting
z = 0in (B3). Thus finally Eq. {B6) to (B9) are proved.
To establish (3.15), recall (3.8):

1. lab ) 2oWXY

B23
py (B23)
By Leibniz’s rule one has
/
d (ab)12 Z (p Y" WI P-aya
(B24)
. . n dnY o
where the obvious notation Y =7, Y® =0, etc. has
Z

been used. Hence,
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L) (o

+ 3 )YP 57
r=1

(I;P)W""“’Xq] (B25)

and -
-z § (P
ii Lz emw s ()
M =p= q)(/;l: )1‘;2‘ g2 (g ] (B26)
So
s g omw

I—p

E D@r'-774

v 5 20w
(B27)

Combining this result with those for 7, , and I, , one gets at
long last Eq. (3.15).

oV 1
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An Sp(3,A) x O(NV — 1) basis for the nuclear shell model

H. Ogura® and D. J. Rowe
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An Sp(3,R ) X O(N — 1) basis of wave functions is constructed for the nuclear shell model. Such a
basis is important because Sp(3,R ) is the dynamical group and O(V — 1) the symmetry group for a
unified independent particle-collective model of the nucleus. It is needed for the diagonalization
of a microscopic shell model Hamiltonian and the interpretation of the collective content of its

eigenstates.

PACS numbers: 21.60.Ev, 02.20.Qs, 02.20.Rt, 03.65.Fd

I. INTRODUCTION

The independent particle and collective models of the
nucleus have recently been unified in the algebraic Sp(3,R )
model.! The dynamical group Sp(3,R ) of this model not only
contains the harmonic-oscillator shell model Hamiltonian in
its Lie algebra, it also contains SU(3), the symmetry group of
the harmonic oscillator, and CM(3), the dynamical group for
collective motion in three dimensions, as subgroups. Sp(3,R )
is itself a subgroup of the full dynamical group Sp(3N,R ) for
the N-particle harmonic oscillator in three dimensions. Thus
the Sp(3,R ) model is a submodel of the full interacting shell
model.

The Sp(3,R ) model is a unified model in the sense that
both independent particle and collective Hamiltonians are
contained in its enveloping algebra. Thus the eigenfunctions
of a unified model Hamiltonian lie within the Sp(3,R ) irredu-
cible representation spaces. It is therefore of considerable
interest to perform fully microscopic shell model calcula-
tionsin an Sp(3,R ) basis® to see if collective states emerge and
to discover the goodness of Sp(3,R ) symmetry. As a prelude
to such calculations, we consider the construction of an ex-
plicit Sp(3,R ) basis of shell model wave functions.

An intrinsic dynamical group, that is complementary
toSp(3,R ), is O{N — 1), the group of orthogonal transforma-
tions of the N- nucleon coordinates after removal of the cen-
ter-of-mass.? Since the O(N — 1) and Sp(3,R ) actions com-
mute, nuclear shell model states can be classified according
to their transformation properties under both groups. In this
paper, we show how to construct a shell model basis that
reduces the subgroup chains

Sp(3,R ) DU(3)>SU(3)DS0O(3),

(1)
O(N — 1)DS,,

where U(3) is the symmetry group of the harmonic-oscillator
Hamiltonian and S, is the symmetric group of space permu-
tations.* The presence of Sy is important because it means
that spin-isospin wave functions of symmetry contragre-
dienttothat of the Sp(3,R ) X O(N — 1)spatial wave functions
can be combined with the latter to produce totally antisym-
metric nuclear shell model states.

* Present address: Department of Mathematics, Universidad Autonoma de
Guadalajara, Av. Patria 1201, Lomas del Valle, 3ra. Seccion, Apdo Postal
1-440, Guadalajara, Jalisco, Mexico.
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1. REPRESENTATIONS OF Sp(3,A)

A convenient basis for the complexification of sp(3,R } is
given by the quadratics

1 1
Aij = 72‘1"&'0}"’ Bij = 7§n:ainaj"’

(2)
1
Cij = ? Z(a;'rnajn + ajna;!‘n H
where (a},) and (a,, ) are the harmonic-oscillator step-up and

step-down operators for 4 particles in three dimensions.
They satisfy the boson commutation relations

[a;'rm 9a}n ] = [al'"l ’aj" ] = 0’
(3)
[aim ’a}n ] = 6ij6mn

and act on L 3R *4)

(x|, |¥) = L(x,-" + —‘9—) x|¥),

\/E a'xin
| 5 4)
f = —|x —
<x|ain]W) - \[i (’xm axm) (x|W)’

where L *(R **)is the space of square integrable functions of
the nucleon coordinates (x,,; i = 1,2,3, n = 1,...,4 ). By put-
ting 4 = N — 1, where N is the nucleon number, and by re-
garding the (x,, ) as Jacobi relative coordinates, spurious cen-
ter-of-mass contributions to the collective dynamics are
eliminated.

The action of the sp(3,R ) Lie algebra implied by Eq. (2)
integrates to a unitary action of the Sp(3,R ) group.

To construct a unirrep, we seek a lowest weight state
¥ ™ (more conventionally called a highest weight state) satis-
fying

B,|¥™) =0, ij=123, (5)

C;|¥™) =0, 1<igj<3, (6)

C,|¥™) =(m, +A4/2)|¥™), i=123, (7
where m = (m,,m,,m,), a triple of integers, denotes the num-
ber of harmonic-oscillator quanta in the three Cartesian di-
rections. The carrier space 7 for the above unirrep is then
given by

™ = span{ p(g)|¥™); g€Sp(3.R)}. (8)

Observe that Egs. (6) and (7) also define a lowest weight
state for a U(3) unirrep with carrier space
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H5 = span{ p(u)|¥™); ueU(3)}. &)
Evidently we can also identify #77 as the subspace of states
in Z™ satisfying Eq. (5). This subspace will be referred to as
the U(3) lowest weight space.

Basis states for 7' can be labeled by the U(3) Gel’fand
patterns

my m, my

, , m>n{ >m,>n; >ns,
a= ny n R (10)
” n; >ni’>né
n,
Such basis states satisfy
Cil¥3) =) +4/2)|¥3), i=123, (11)

where n,(a), the number of oscillator quanta in the ith Carte-
sian coordinate direction for the state «, is given by

na) = ny, mla)=n] +n; —ny,
(12)
nia)=m, + m, +m;—n; —nj.

Basis states for #°™ are obtained by the action of a basis
of polynomials in the (4,;) raising operators on the #77' basis.

11l. REPRESENTATIONS OF O(A)

The unitary action of the O(4) group on L *R **) is
defined by

[o(t)¥)x)=¥(xt), teO(A). (13)
This induces the realization of the o(4 } = so{4 ) Lie algebra

< d d
J = — —
mn ! z (ka axk Xkn an )

k=1 n m

3

= —1 Z (aZmakn - alnakm)' (14)
k=1

To construct irreducible representations of SO(4 ), we
must first specify a Cartan subalgebra. A convenient choice
is the span of the commuting operators

H =Jpy Hy=Jsy., H =J,_, 4, 00 Jy_3,4_,,

(15)
where H,=J, ,,o0rJ,_,, , according as A4 is even or
odd. Anirreducible SO(4 ) representation is then defined by a
lowest weight state ¥ and the corresponding /-tuple of eigen-
values f = (m,,m,,...,m,), where

H |¥)=m,|¥), k=1,., (16)
To explicitly construct a lowest weight state, it is con-
venient to first introduce the elementary functions®
$H(X)=X, + X5,
(17)
@,(X) = X; + iX,, etc.,
where we use the notation
(Xn’ Yn’Zn)'__(xln!xZn’xJn)' (18)

These functions evidently have weights{1,0,...,0), (0,1,0,...,0),
etc., respectively, and serve as building blocks for lowest
weight states. One sees that, for 4>6, the square integrable
functions

Yr(x)=e VIR Pm(x), (19)
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where R ? is the O(4 ) scalar R > =3, x?,, and

$X) ¢1(Y)r’
$lX)  @(Y)

$(Y) &(Z)]"
X|6:AX) Y) ¢,.Z) (20)
$:X)  &5(Y) :(Z)

with 4, >0, are highest weight states; i.e., lowest with respect
to a reverse ordering of the Cartan operators, Eq. (15). Thus
P defines an SO(A ) representation

f={m,, my, ms5,0,...,0). (21)

It is known that the only SO{(A4 ) representations that
occur in L (R **) are of the type (21) with m , m,, m, taking
integer values.®’

In fact, we need to consider O(4 ) rather than SO{4 ) be-
cause only O(4) contains the symmetric group S,
(N =4 + 1) as a subgroup. Now, when 4 is odd, the repre-
sentation spaces for O(4 jand SO{4 ) are the same.” But, when
Aiseven, an O(4 ) representation space, in general, contains a
conjugate pair of SO(4 ) representations (m,, m,, ..., m,;) and
(my, my, ..., —m;) with m;>m,>-->m,>0. However, for
the representations occurring in L *(R *4) this extra compli-
cation does not arise provided 4>7, for then A4 is odd or
m;, =0.

Since the above Sp(3,R ) and O{4 ) operators commute,
states in L %(R **) can be labeled according to their transfor-
mation properties under both groups. Now it is known that
the decomposition of L*R*'} into irreducible
Sp(3,R )X O(A4) subspaces has two important properties.
Firstly, the decomposition is multiplicity free and secondly,
the two subgroups Sp(3,R ) and O(4 ) are complementary in
that a unique representation f = (m,,m,,m;,0,...,0) of O(4)
occurs in combination with the Sp(3,R) representation
m = (m,,m,,m;)*. Thus a single label m serves to label unir-
reps of the direct product group Sp(3,R ) X O{4 ). In an ob-
vious extension of the definitions (8) and (9) of #” and #7'
we now define H™ to be the carrier space for the
Sp(3,R ) X O(4 ) unirrep m and H ' to be the carrier space for
the corresponding lowest weight U(3) X O{4 ) unirrep space.

As a consequence of the above, basis states for H ™ can
be constructed with labels A and v, where A indexes an
Sp(3,R ) basis, constructed as indicated in Sec. IT and

my, 0 - 0]

m; mj; mi O

P = [0,
$ilX)

[m, m,

m' m? m’ 0 ..
V= ! 2 } (22)

indexes an SO(4 ) Gel’fand basis. Similarly, a basis for H [
can be constructed with labels @ and v, where a indexes a
U(3) Gel’fand basis Eq. (10) and v is again given by Eq. (22).

Wave functions of L %(R **) are customarily expressed
in the form

W)= e * 7P (x), (23)
where R 2 = 2,,x2, and, in a harmonic-oscillator basis, P (x)
is a polynomial. Since
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:W (x) = e~ VAR 2(3;9 — X )P x} (24}
X in in

it follows, from Eqgs. (2) and (4) that

2 1
A--Wx __=e-—~(|/2)R Z(xm_ _ )
! ( ) 2 xin

n

1
X jin T T P s
2 1 &’
B» Sy —(1/2)R P , 25
i x)= Z o 0%, (x) (25)
C,;¥(x)

: 1 3\ 4 A
— o —(172R —_ —— —\P
=€ (z(x"‘ 2 Ix )6‘x 9 z) )

n

Introducing the Laplacian

4= (26)
Z ax2,
and observing that
—A/4 eA/4___x _ _1_ d (27)
2 ox,,
Eq. (25) becomes
A W (x)=e /R e= 4740 4P (%), (28a)
2 1 F
B v — p,—(172)R —~A/4 /4P , 28b
(x)=e Z Ix,.0%, (x),  (28b)
C,¥(x)=e VAR~ /4(E,,. + 5,,.,4 /2)e“ 4P (x), (28¢)
where Q,; is the Cartesian quadrupole moment
zxm "jn (29)
and
J
E;= En:x,,,- F (30)

nj

is an element of gl(3,R ), the Lie algebra of the general linear
group in three dimensions. Equation (28c) is simply an
expression of the well-known isomorphism between gl(3,R )
and the complexified u(3) Lie algebra.

Now, if ¥ is in the U(3) lowest weight space #75 Eq. (9),
then B, ¥ = 0 and, by Eq. (28b),

2 3xaax Pix}=0. (31
Hence, 4 P(x) =0 and
e2”*P(x) = P{x). (32)

It follows from these equations and Eq. (28¢) that the polyno-
mials P (x) corresponding to states in the U(3) representation
space # are harmonic and homogeneous of degree
m, + m, + m; and carry an irreducible (nonunitary) repre-
sentation [m,m,,m;) of GL _(3,R ). Thus we may define a
basis of harmonic homogeneous polynomials { P, } for an
irreducible representation of GL (3,R )X O(4 ), w1th a in-
dexing a GL , (3,R ) Gel’fand basis and v indexing an SO(4 )
Gel’'fand basis. Then, from the definition, Egs. (10) and (11)
of the u(3)~ gl(3,R } Gel’fand basis, we have
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E, Pz, (x)=na)Pg, x), (33)

and the corresponding states {7, ] carry a unirrep m of
U(3) X O(4 ) and provide a basis for H .

The construction of these polynomials is discussed in
the following section. In concluding this section, we remark
only that, to augment the U(3) X O(4 ) representation space
H " to the representation space H ™ for Sp(3,R )< O(4 ), we
have simply to apply the sp(3,R ) raising operators (4,;) repea-
tedly to each of the {77, } basis states. Then, using Eq. (28a),
we note that

[y X X AR ]88, (%)
= e~ IR A0 X Oy | P (x). (34
Thus, it follows that a basis of polynomials for H ™ can be

constructed of the form { F,(Q)PT, (x)}, where { F,(Q)} are
polynomials in the {Q, }.

IV. POLYNOMIALS FOR Ay

We wish to construct the harmonic homogeneous poly-
nomials { P7,} on R* that carry a left representation
(m,mym;) of GL_(3,R) and a right representation
(m,,m,,m;,0,...,0) of O(4 ). Thus we want polynomials satis-
fying

Prigx)= S Io@PLK), gcGLBR), (35
p=1

P (xc) = z PZ,(x)D 7 (c),

where I"™ and D ™ are, respectively, the representation ma-
trices for GL , (3,R ) and O(4 ). Note that the required repre-
sentation for GL  (3,R ), being of finite dimension 4, is not
unitary.

Now any x € R >4 can be factored

x = bEg, (37)

where b is a positive symmetric 3 X3 matrix defined by
b? = xx, E is the 3 X 4 matrix

ceO(d), (36)

E,, = b, (38)
and ¢ € O(4 }. It follows that, with this factorization,
Pl lx)= Z 2 I (b)PE.(E)D g, (c). (39)
=lpu=1

Thus to discover the general form of a polynomial P, we
need to consider the three factors in this equation.

Consider first the GL _ (3,R ) matrix I" "(d ) for d a diag-
onal matrix d = diag(d,,d,,d). From Eq. (33), it follows that

I p(d) =6,/ d) (40)
with

fald) =d 1" 3#d e, (41)

Since any general linear matrix g can be factored
g = r, dr, with r, and r, rotations, it remains to consider
I 7g(r) for r € SO(3). Let C(SLM;ma) be the linear transfor-
mation from the GL_(3,R} Gelfand basis to a
GL . (3,R)DS0O(3} DSO(2) basis and let C (ma;6LM ) be the
inverse transformation, where & is a multiplicity index. It
then follows that for r € SO(3)
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I3l = Y Clma;6LM)D 3,y (r)C(BLN;mB),  (42)

SLM
where Z* is a Wigner rotation matrix.
For arbitrary g = r, dr,e GL , (3,R ), " ™(g) is evidently
given in a GL , (3,R ) DSO(3) DSO(2) basis by

ISimsia (@)= z'@th(rl)Fg;_N,&L N (@)D For (7),
7

(43)
where

I Ginsow(d) =Y CBLN;ma) f7(d )C (ma;8’'L 'N").
(44)

Consider next the d,Xd, matrix {P7 (E)} and recall
that v indexes an SO(4 ) Gel'fand basis Eq. {22). It will be
supposed that this basis is ordered such that the first d, vec-
tors correspond to patterns of the type
(m, my, my; 0 - 0]
m; m; 0 « O

my 0 - O
0 .. 0

l<v<d,. (45)

0
One observes that there are indeed just d; such Gel'fand
patterns since they are in one-to-one correspondence with
the U(3) or GL , (3,R ) patterns of Eq. (10). Observe too that
the corresponding basis vectors are all O(4 — 3) invariant
and in fact span the maximal O(4 — 3) invariant subspace of
the full O(4 ) representation space.

The construction of the required polynomials is now
facilitated by use of the following theorems proved in the
Appendix.

Theorem 1: If V'™ is the carrier space for an irreducible
representation (m,,m,,m,,0,...,0) of O(4 }, then the maximal
O(4 — 3)invariant subspace V' of V™ carries an irreducible
tensor representation (m,,m,,m,) of GL _ (3,R ).

Theorem 2: In the above ordered basis, P (E )} = 0 for
v>d, and the d, Xd, submatrix (P ;(E jjaBf = 1,...d,) isa
linear transformation from the O{4 ) Gel’fand basis Eq. (45),
for V' § to the GL | (3,R ) Gel’fand basis.

From these theorems, it follows immediately that a ba-
sis of polynomials is given, in the GL _(3,R ) D SO(3)3S0(2)
and O(4 ) Gel’fand bases, by

Poiwlx) = z I§imer s b JIC(6'L '‘M';mB)\D g, (c),

SL'M’'B
(46)
where I" ™ is given by Eq. (43) and
— dl
C(6LMmB)= > C(SLM;ma)P ,(E) (47)

a=1
is the linear transformation from the O(4 ) Gel’fand basis for
V& to the GL  (3,R ) D SO(3) D SO(2) basis.

V. AN Sp(3,AR) < O(A) BASIS FOR THE SHELL MODEL
We now have, from Eq. (46), a basis for the U(3) X O(4 )
space Hg'

W i (x) = eI (). (48)
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It can be augmented to a basis for the Sp(3,R ) X O(4 ) repre-
sentation space H ™ by multiplying each basis state in H 7" by
a complete set of polynomials in the symmetric tensor
@ (x) = xXx as noted in Sec. IV.

Now the matrix elements I" %379 ;. (g) of the (2,0,0) rep-
resentation of GL _ (3,R ) are expressible

2,0,04 —
F(I_M.L’M'(g)_
a+f=My+8=M"'

X(1af LM )(11y5|L'M'g,,, 855, (49)
where (g,z) are the components of g€ GL, (3,R) in the
spherical coordinate system and (11af8|LM) is an SO(3)
Clebsch-Gordan coefficient. For L = 2 and L ' = 0, Eq. (49)
becomes

1
FERie = < 3 (aB2M)S(~ gy

+B M
(50)
For L = L’ =0, Eq. (49) becomes
1
(8= ?2(— 1 P8ap8 - (51)
of

For any x € R ** we can setg = bin Egs. (50) and (51), where
b is the symmetric 3 X 3 matrix for which b ? = xx, and ob-
tain

F(zﬁl(?g())(b ) o< o), (52)

I %00(6) < Qoolx),
i.e., the quadrupole and monopole moments, respectively. It
follows that a basis of polynomials in Q(x) is given by
{I 5. m00(b )}, where n = (n,,n,,n,) is a GL (3,R ) represen-
tation realizable as a symmetric product of (2,0,0) represen-
tations. The n-representations realizable in this way are well
known and are given by the set of all even integers 7,,1,,7,
satisfying the inequality

1y >n,>n520. (53)

Thus a basis for H ™ is given by the set of wave functions

' 4 giL,Mlsszsz (x)
=~ VAIR'g—4/ 5,L,M,00 (0 )P 5.p aa (%), (54)

where 4 is the Laplacian Eq. (26), I"" is defined by Eq. (43)
and P by Eq. (46). This basis can evidently be coupled to
good U(3) DSO(3) symmetry in an obvious way.

Finally, note that # ™ is not a shell model Hilbert space.
The shell model space is the space of totally antisymmetric
combinations of L %(R 3*) spatial wave functions and spin-
isospin wave functions. To obtain a shell model basis for a
unirrep m of Sp(3,R ), we must therefore, first transform the
above SO(4 } Gel’fand basis to a O{4 | D S, basis, where S, is
the symmetric group for N = 4 + 1 nucleons.

Let X (mv;e[ f]o) denote a transformation coefficient for
the above change of basis, where [ f] labels a Sy unirrep, o a
basis for this representation, and € is a multiplicity index. We
can now define the fully antisymmetric functions

Poe)x) = S P L o (XK (mviel flo)X ), (55)

where {X {71} is a basis of spin-isospin wave functions for a
representation [ /] of S, contragredient to [ f].
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Thus, we obtain a shell model basis for an Sp(3,R ) unir-
rep m
¢ nmae.[Lf,}w,aszM, (x)
= e~ VIRe AN 0l )PEEA] (x).
Vi. SUMMARY

In summary, we have found an Sp(3,R ) X O(4 ) basis of
wave functions

(56)

é :.";.lLf.l]u.sszMz (x)

=e WA ANY | m,00(B)PFEIL () (57)
for the nuclear shell model, where I"" is a GL  {3,R ) repre-
sentation matrix, ina GL__ (3,R ) DSO(3) 3SO(2) basis, given
explicitly in Eq. (43), b is the symmetric 3 X 3 matrix defined
by b? = xx and

P ix) = z I Gimsem(b)

SL'M’x
X {m&'L ’M’|a(c)|me[f]K)X,[f],
x=>bEc, ce04) (58)

Note that the second factor on the right of Eq. (58)is an O{4 )
matrix element between an O{4 } DS, basis state on the right
and a GL _(3,R ) DSO(3) DSO(2) basis state for the O(4 — 3)
invariant subspace of the O(4 ) m-representation space on the
left. It was related previously to the O(A4 ) matrix elements
D, (c), in a Gel'fand basis, by
(m&'L’M’|o(c)|mel f1«)

= ST(S'L "M ;mB)D (e} (mviel £ 1x), (59)

122%

where C and K are the linear transformations of the basis.
The third factor X /! in Eq. (58) is a spin-isospin wave func-
tion of symmetry [ f] contragredient to the symmetry [ f] of
the spatial wave function so that the combination is fully
antisymmetric.

In practical applications, it is convenient to work with a
basis of shell model wave functions that reduce the subgroup
chain

Sp{3,R } D U(3) DSU(3) 280(3)>S0(2}. {60)

Such a basis is now obtained simply by the unitary transfor-
mation

¢ ;’E;L{;SILM = z (At )0\ LM (A 6212 M, |

'5 lL lMlb?LZMZ

XplAISLM ) 8 st 5,100, (61)

where
Uy =n2—n3, (62)

the transformation coefficient is an SU(3) Clebsch—Gordan
coefficient, and p is a multiplicity index.

In order to assist in the interpretation of the collective
content of microscopic shell model wave functions we would
further like to discover the transformation coefficients
between the basis states of the subgroup chain (60) and those
of the chain

Sp(3,R )DCM (3) 3S0(3) DSO(2).

However, we have not yet succeeded in finding them.

Note added in proof: Subsequent to submission of this
manuscript, one of us has developed recursion relations for
the overlaps of the above basis states, using coherent state
theory, and shown how to transform them into an orthonor-
mal basis and calculate Sp(3,R ) matrix elements [D. J. Rowe,
J. Math. Phys. 25, 2662 (1984)].

ACKNOWLEDGMENT
This work was supported in part by the Natural Sci-

ences and Engineering Research Council of Canada.

APPENDIX

Theorem 1: If V'™ is the carrier space for an irreducible
representation (m,,m,,ms,0,...,0) of O(4 ), then the maximal
O(A — 3)invariant subspace V' ' of "™ carries an irreducible
tensor representation (m,,m,,m;}of GL  {3,R ). Toprove this
theorem we need the following propositions.

Proposition 1:1fg € GL(3,R ), thereexistssome G € O(4 }
of the block form

6= L[¢ 4 ]

klB C

where k is a positive number.

Proof : The proposition is obviously true if g € O(3) with
k=1, A=B=0, and C=1, ,. Thus, since any
g€ GL(3,R) can be factored g = r, dr,, where r,,r, € O(3)
and d is diagonal with entries d, >d, >d; > 0, it is sufficient to
consider such diagonal matrices. For g = d, one can evident-
ly construct an O{4 ) matrix

Zn =n— Ny,

(63)

(A1)

J

d, 0 0 0 0 10

0 d, 0 (d? —d2)? 0 'o

1{o 0 d, 0 d3 —d2)'? 0
G=— 2 241/2 { (A2)

dlo -—-di—-d} 0 d, 0 0

1
0 0 —(d? —d?)V? 0 ; ,0
0 - 0 T T T T T o o0 T T
i I

which completes the proof. 0  GL,(3,R)Gel'fand patterns of Eq. (10). 0

Proposition 2: The dimension of ¥ is equal to the di-
mension d, of the GL , (3,R ) representation (n1,,m,,m5).

Proof : Construct an ordered basis for ¥ such that the
first d, basis vectors correspond to Q{4 ) Gel’fand patterns of
the type shown in Eq. (45). These are O(4 — 3) invariant and
span the O(4 — 3) invariant subspace ¥ . Now observe that
these patterns are in one-to-one correspondence with the
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Proposition 3: In the above ordered basis, the d, Xd,
submatrix 7 of the matrix

DM(G)=<T X)

Y Z (A3)

for the O(A ) representation (m,;,m,,m.,0,...,0) depends only
on the elements of the 3 X 3 submatrix a of the O{4 ) matrix
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o-(: )

Proof: Define S (a) to be the set of all O{4 ) matrices with
left upper 3 X 3 submatrix equal to g; i.e.,

M@=[GqukG=(z Q} (A5)

Evidently S (¢) is invariant under both left and right multipli-
cation by a group element

I

h=(3

0

Thus S{a) is a double coset in the double factor space
O(4 — 3)\0(4 )/0(4 — 3). Now D ™(h ) is of block form

0
),ueOM—M. (A6)

1, 0
D™h)= ( OI W). (A7)
1t follows that
ThG)=T(Gh)=T|(G). (A8)

Inother words, T'is a function only of the double coset S (a). O

Proposition 4: The polynomials {P7 a=1,
wodyv=1,..,d,} on R* that carry a left representation
(my,mym;) of GL,(3,R) and a right representation
(my,m,,m5,0,...,0) of O(4) have the property that, in the
above ordered basis,

P7(E)=0 if v>d, (A9)
where E € R * is defined by Eq. (38).

Proof : Observe that E is O(4 — 3) invariant; i.e., for

h € O(4 ) given by Eq. (A6), Es = E. Furthermore, in the or-
dered basis, D ™(h } is of block form (A7). Thus,

P (Eh)=3YPLE)D] (h)=PC(E) (A10)
"
for any u € O{4 — 3), implying Eq. (A9). O
Proposition 5: The d;Xd, matrix [PJG(E);
a,f = 1,...,d,] is nonsingular.
Proof : By Proposition 4
d,
PLIEG)= Y PE\DEI(G) (Al11)
=1

It follows, by Proposition 3, that, for y<d,, P, (EG)is a
function only of X ~'g and that

d,
P} (gE) =P, (kEG)= z PI,(kE)D (G). (Al12)
=1

Now (PJ4(E)) singular means that there exist some
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numbers (4,) such that 2,4, P7,(E) = 0 which, since the
{ P} are all homogeneous of constant degree, means
3, A.Pog(kE)=0, which in turn, by Eq. (A12), means
2, AP (gE)=0and

Y

E;gfiaPZ'y(gE)D’y"v(C) = > AP (8Ec) =0 (A13)
for any ¢ € O(4 ). Since almost any x € R * can be expressed
as a product x = gEc for some ge GL, (3,R), ceO(4), it
follows that (P [;(E )) singular implies =4, P, (x) =0 for
any x € R *. But this is impossible because the polynomials
{ P} are a basis for an irreducible representation of the
group GL _ (3,R ) X O{4 ) and must, therefore, be linearly in-
dependent. O

Proof of Theorem 1: Since the elements of D ™(G ) are
homogeneous polynomials of degree (m, + m, + m;) in the
elements of G, it follows, by Propositions 1 and 3 that we can
define the d, X d, array of functions of GL _ (3,R)

T:B(g) :km.+Mz+m3Dzﬁ(G), a,ﬁ: 1""’dl' (A14)
The identity P, (gE) = P (kEG), for y<d,, now implies

;F;"ﬁ(g)P;;y(E) = ;PL”E(E)TZ‘Y(g).

Since { P ;(E )} is nonsingular, this equation means that 7™
is a representation of GL _ (3,R ) equivalent to the irreducible
representation /" and that { Pz (E ) is the intertwining op-
erator. |

Theorem 2: In the above ordered basis, P, (E) = O for
v>d, and thed, Xd, submatrix ( P z(E);a,8 = 1,....d|)isa
linear transformation from the O(4 ) Gel’fand basis for V[ to
the GL , (3,R ) Gel’fand basis.

Proof : This theorem follows immediately from Propo-
sition 4 and Eq. (A 15) and the fact that I” ™ was defined as the
representation of GL , (3,R )ina GL  (3,R ) Gel’fand basis.O

(A15)

'G. Rosensteel and D. J. Rowe, Phys. Rev. Lett. 38, 10 (1977); Ann. Phys.
(NY) 126, 343 (1980); P. Park, J. Carvalho, M. Vassanji, D. J. Rowe, and
G. Rosensteel, Nucl. Phys. A 414, 93 (1984).

M. Vassanji and D. J. Rowe, Phys. Lett. B 125, 103 (1983).

*M. Moshinsky and C. Quesne, J. Math. Phys. 12, 1772 (1971).

*P. Kramer and M. Moshinsky, in Group Theory and Its Applications, edit-
ed by E. M. Loebl (Academic, New York, 1968), Vol. I, p. 340.

G. Racah, Group Theory and Spectroscopy, in Springer Tracks in Modern
Physics (Springer-Verlag, Berlin, 1965), Vol. 37.

¢J. D. Louck and H. W. Galbraith, Rev. Mod. Phys. 44, 540 (1972).

"H. Boerner, Representations of Groups, (North-Holland, Amsterdam,
1970), 2nd ed.

H. Ogura and D. J. Rowe 3550



Electrons moving in a crystal weakly coupled to a random reservoir

Arnaldo C. R. Nogueira
Instituto de Matemdtica, UFRJ, Rio de Janeiro, Brazil
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We present here an illustration of the difference between static and temporal disorders. We
consider a model which is modification of one previously introduced by Martin and Emch, to
discuss the mechanism of the long-time, weak-coupling limit in statistical mechanics. It consists
of an electron moving in a crystal where impurities are randomly scattered. We introduce a
stochastic time disorder in the potential and prove that this new stochastic dynamics converges to
a semigroup law without the limitations occurring in the work of Martin and Emch, i.e., the short

time restriction and in any space dimension.

PACS numbers: 72.10.Fk, 02.50.Ey

1. INTRODUCTION

We here construct a Hamiltonian model for which we
can prove the existence of the so-called Van Hove’s long-
time, weak-coupling limit." Our system will be described by
a time-dependent Hamiltonian of the form

H{t)=H,+ AV (t).

The free Hamiltonian H, is diagonal in the momentum re-
presentation. A is a dimensionless parameter which mea-
sures the strength of the interaction. V' (¢) is a potential ran-
dom in time and space defined by a multidimensional
stationary Gaussian process v,(¢), n€Z®, >0, with zero
mean, and time-dependent correlation functions given by

(Va0 (5)) = g e ™,

Vn,meZ?, 5,t>0. The parameter ¢ > O indicates the random
time dependence, in the sense that if ¢ =0, the electron
moves in a static random medium.

We are able to prove the convergence of the expected
value of this model’s wave packet as 4—0 and 7 = A4 %t re-
mains constant, for all rescaled time 7. This result is an im-
provement on the ones already obtained for other models.

The proof of our result consists of checking the hypoth-
eses of a theorem on asymptotic analysis of random differen-
tial equations proved in Ref. 2. This result imposes a strong
mixing condition on the model’s dynamics.

We were motivated by the work of Martin and Emch,?
where they constructed the first nontrivial model to show all
the phenomenon proposed by Van Hove for which the weak-
coupling limit could be controlled rigorously through the
perturbation expansion as suggested by Van Hove. The Mar-
tin—~Emch model consists of an electron moving in a crystal,
represented by the lattice Z*, where impurities are located,
and has a Hamiltonian of the form H;, + AV. The potential ¥
is given through a static real Gaussian stochastic process.
Martin and Emch successfully obtained from the microscop-
ic dynamics the macroscopic one described by the so-called
Master equation. They succeeded in controlling The Dyson
expansion series for the solution of the stochastic equation,
but a radius of convergence 7, appeared. That is, the long-
time weak-coupling limit is computed only for 0<7<7,. This
restriction is unexpected since it has no physical explana-
tion, although it seems to be a consequence of the method
used in their proof. Spohn* extended their result for func-
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tions of the momentum, but the time restriction still ra-
mained. Also quoted by Martin and Emch and Spohn, as
unsatisfactory are (i) the deep dependence of their proofs on
the electron-type dispersion law, if this law is slightly altered
their proof does not work out; and (ii) the restriction on the
dimension of the lattice. We emphasize that our proof has no
time restriction, permits the use of other dispersion laws, and
holds for models with any finite dimensional lattice.

In this work, we also link our result with the one ob-
tained by Martin and Emch, although their model has a dif-
ferent dynamics. We have introduced an assembly of models
indexed by the parameter ¢, where for each model there is no
time restriction on the validity of the result macroscopic
equation. We prove that as c—0 (i.e., as we weaken the medi-
um random time dependence), our macroscopic dynamics
converges strongly to the one obtained by Martin and Emch.

Il. DESCRIPTION OF THE MODEL

According to the formalisms of Hamiltonian mechan-
ics, our model consists of an electron moving in a crystal
weakly coupled to a reservoir that scatters impurities on the
crystal.

Our free system is represented by the Hilbert space 57,
the reservoir is given by the Hilbert space %, and the system
plus reservoir by ##° ® % . The Hamiltonian on # & % is

where H ;- is the free Hamiltonian, H ;- is the reservoir Ha-
miltonian, AH; represents the interaction between the two
entities, and A is a dimensionless coupling parameter mea-
suring the strength of the interaction causing collisions.

Here, we work in the same framework used by Emch
and Martin® (for a more general structure see Ref. 4). We
consider # = £*Z°) and F = .¥*(02,o/, P), where the
triple (2,47 ,P ) is a probability space. The Hamiltonian H ,.
is defined by its momentum representation in the Hilbert
space .Z*B), where B = [ — 7,7},

(Hy9)0)=074(6),
where 6 = (6,,6,,0,)eV, 02 = 0% + 62 + 62,

. I in6,
$0)= -5 3 %
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The dispersion law 68 2 is discussed below.

We introduce the dynamics of the reservoir as one sees
it in the Schrédinger picture of the coupled system. We con-
sider a group of measure-preserving transformations
{T (¢ ):teR} acting in (£2,.o¢ ,P). Using these transformations,
we define a strongly continuous group of unitary operators
acting in & :

Us (1) (JeF=f (T2)[-1)e5 .
We call H5 the self-adjoint operator which generates the
group Ux(t}.

The interaction law is given by

HI = EPn ®Qn’

neZ?®
where (P, f), =8, fm, for every fei, §8,, =1, if
n = m, and 0, otherwise, and (@, £ }(@) = v, ()¢ (w), for ev-
ery e ¥.

As one can see in Ref. 2, the interaction with the reser-
voir has the effect on the free system of a time-dependent
perturbation. The dynamics in J# satisfies the following ini-
tial-value problem (for details see Ref. 2):

d—fj—{‘ﬂ — AV} 0) $2(0) = de 7, 2.1)
where
Varlt) =ie” " 3 v, (T(t)[-))P,e"". (2.2)

We should observe that the operator ¥ - (¢ } is unbound-
ed (Theorem 4.1), so we have to prove that (2.1) is well de-
fined for all wef2, but a set of measure zero. Because of the
unboundedness of ¥V ,-(t), Martin and Emch and Spohn®*
considered a finite cutoff in the lattice Z> and extended the
dynamics to the whole Z* through an infinite-volume limit.
We shall avoid this procedure working with unbounded op-
erators.

We call

v ()] =0, (T()[-]).

The transformations T (¢ ), t€R, are given by the follow-
ing conditions:

(i) E {va(t)} =0,

(ii) £ {0n(t )0, (5)} = 8 e ™, (2.3)
where c is a positive constant. Here E {.} stands for the inte-
gration over {2 with respect to P. The constant ¢ will work as
a (fixed) parameter through our entire analysis. This means
that for each ¢ we have a distinct model, as ¢ gets smaller
each system becomes a weaker modification of the so-called
Martin-Emch model.? The term “weaker modification” will
be fully understood later.

The g,’s satisfy the following conditions:

i) 8. =8_.

(i) gl = 3 8] < o0, (2.4)

., 1 in
(i) g(6)= e ngz‘,zg,. "> 0,
for every 6 B.

It is clear that g is a continuous function.
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lll. ASYMPTOTIC ANALYSIS

We want to show that the system described in Sec. II
fulfills all the conditions imposed by the theorem proved in
Ref. 2.

We say that W is a random operator acting in &% when
for each g% there exists a set £2,, of full measure, such that

W (w)pe?,

for every wef2,.

We first prove that Eq. (2.1), which describes the dy-
namics of the system, makes sense. This means that, for each
teR, V4. (t) (2.2) is a random operator acting in #° in the
sense given above.

Lemma 3.1: For every ¢e57,

Vé=>v,P.d ae
neZ’

is a well-defined random vector in 57°.

Proof: Let g€ 77 be fixed.

From (2.4), it follows that

E{|V |’} =slig >

Thus there exists £2, €27, such that P(2,) = 1, and for
all wef2,

Viw)pes. O

Next we show that the abstract framework of the model
discussed in Sec. II satisfies the conditions imposed by the
limit theorem in Ref. 2. We start proving that condition (B)
of Sec. 2 (in Ref. 2) is satisfied.

Lemma 3.2: There exists a positive constant C such that
for every ¢ in # and O<r<s<s:

i) ElVat)pP<Cig |
(i) ElVa)Vatslp’<C?l 1%
(iii) E|Va(t)Va(sp P <CB I,

| dg Vg

Proof: We now prove part (i).
Let ¢ and >0, we have

ENVrttb P =E( S0P, 3 0n(11Pnd )

meZ*

) £ ‘ 2<C2(f — )l II*-

=E3 v P17, I =gl I

We skip the proof of parts (ii)—(iv), since it follows from
calculus analogous to the one used above. O

The next lemma gives the infinitesimal generator of the
limit semigroup. This refers to condition (D} of Sec. 2 (in Ref.
2).

Lemma 3.3: There exists in &7, for each ¢e7#°, the
strong limit

s — lim —1— dsf dr E{Vz )V (rd }.
t—a o o
Proof: Let ¢ and 0<r<s. We have
E{V4(s)Vs (g }

= — 3 g _me T Uy — )P, Upls — 1P, Uolrig.

n,meZ®
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Therefore for each ¢eB, we have
E { Vi (s)V 5 (r)d }(9)

- _e~ds~'>2fdeljd92e-"s9’
B B

(s — 7] 2 % 1
x e ™™g (6,)

(2’
X 2 8n-me

in(6 — 6,) pim(6, — 6)
n,meZ?

Recall that

m9

(277')3/2 Z
We conclude, using (2.4), that

E{V5(s)Vs () }(0)
=e %" f"Ldel e g0 —6,)6(6).

Thus, for every >0,
1 t >4
L[ s [ arE{vacs o)
0 0

= [ ——I-J ds| dre—-"7
t Jo 0
x [ do,e "=t - 0)|s(0)
B
Consequently, for all 6B,

ds f dr E{V,(s)V (1 }(6)

lim —

t—>00 [

= [ —J; dse_c‘lLdﬁle_mehﬁlgw—@l)]fﬁ(g)-

Using (2.4), for every ¢ > 0 we obtain

( H ds f dr E{Va(s)V (1 }6)

<@g, f “dre=<1p(0)).

Thus, by the Lebesgue dominated convergence
theorem, for every g% there exists the strong limit
s — lim —

Jim — dsf dr E{Vs(s)V%(ré }

in #°. _ O
Definition 3.1: For each c>0, let V:7"~>7 be the oper-
ator given by

(V.8)6)
_[ ste‘“zfdﬁl — 07— Ohotg _ 9]¢(9)

_ [ —\r

2yc
for every ¢c77. _
Lemma 3.4: For each fixed ¢ > O, V, satisfies the follow-

ing conditions:
(i) V. is bounded,

_9(92_621)/80]¢(6 )

3553 J. Math. Phys,, Vol. 25, No. 12, December 1984

(i) thesemigroup {S,(r) = exp(r¥,):7>0} is contrac-

tive,
(iii) there exists a constant A such that for every fixed
t>0and ¢ei7,
1 A
L [ as <Aps).
t Jo 0 t

Proof: Parts (i) and (ii) are trivial and their proofs are
omitted.
Take a fixed 6€B,

(7.6)0) f tdsfdrE{V%(s)V%(rw }6)

— Jw dgq e"cq’f do e " Clge 0,)] (3.1)
0 B

+LJ dsJ. dre*“s_’)zf do,
B

x{e ™7 g6 — 6,6 (9).
We note that

f dqe'“q2fd61e 90~ Oha9 _ 9)
0 B
=Lf de dre‘“”“"zf do, e """~ "igg g,
t Jo o B
+ij dsf dre"”zf d, e g9 — 0,).
tJo s B

We now substitute the above expression into Eq. (3.1)
and then we majorize the term which is left. We obtain

Lfdsf dre“c’zjdé’l —m0*-9ie9 — 6))
t Jo s B

<(2m3’21|g||,if dsf dre=<
(21r>

llg ||1

This concludes the proof of the lemma. O

In order to show that the mixing condition imposed by
the limit theorem in Ref. 2 is valid for our system, we need to
mention a result found in Ref. 5.

Let {f} and {f’} be two sets of real-valued random var-
iables belonging to the same Gaussian system. Let It and It
be the o-algebras generated, respectively, by the events
{feB }and {f’eB '}, where Band B ' arearbitrary Borel setson
R. Let ) and b be the closure in mean square of the linear
span, respectively, of {f} and {f"}.

We now introduce a mixing coefficient relating the o-
algebras It and .

Definition 3.2: We define

ne |E {(g — Eg)lg’ — Eg')}| ,gef)]
pn )_SUP{E "lg — Eg’E g’ — Eg'|* g'eh')’
We call
aMM)= sup |PArd’)—P(4)P(4’)
A A e’

the maximal correlation coefficient between the o-algebras
M and . In Ref. 2, it is proved that under the above as-
sumptions
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a(@, ;) = B (M, D). (3.2)

We now define the o-algebras .7}, 0<s<¢< w0, and the
strong mixing coeflicient of these o-algebras used by the lim-
it theorem established in Ref. 2.

Definition 3.3: For every 0<s<t< o0, let &% be the o-
algebra generated by all cylinder sets

Z (Ayye sty ;hR ) = {0€2:(v,, (1),...0, (M)ER §,
where keZN _ , n,,...,n, €Z°, s<r<t (incase t = o0, <7 < 0,
and Re B (R*). Here B (R*) stands for the o-algebra of
Borel sets in R*.

Definition 3.4: We call a the strong mixing coefficient of
the g-algebras &}, 0<s<t< w0, given by the relation

7€(0, o0 posupa(.Z, & 7, ).
>0

The next lemma is linked to condition (A) of Sec. 1 (in
Ref. 2).

Lemma 3.5: Let a be the coefficient established by De-
finition 3.4, then for every 70,

cr?

alfrj=e~

The proof of this lemma is done in Sec. IV. Let M *)(z,s),
for fixed 0<s<¢, be the propagator (or solution) operator of
Eq. (2.1). The next result states that Eq. (2.1) is a strong
mixing random differential equation.

Lemma 3.6: For every ¢ and O0<s<r<¢t, V() and
MWt 5)p are weakly «7%-measurable.

Proof: We only need to show that, for every ye#”, the
function

W€ 2 (Vi (ro)p,¥)
is &/ ¢ -measurable.
We rewrite (V. (r,0)9,¢) as

3 Va6 U — P, U lrid)

which is a linear combination of ./ ;-measurable functions.

Therefore V. (r)p is weakly &/ ;-measurable. O

The notions of strong and weak measurability are equi-
valent in a separable space (see Ref. 6).

From trivial considerations on the solution of Eq. (2.1)
formulated in Ref. 2, we conclude that, for fixed 0<s<¢,
M *)(t,5) is a unitary operator [condition (C) of Sec. 2 in Ref.
2].

We thus obtain by the limit theorem proved in Ref. 2:

Theorem 3.1: For each fixed 70 and ¢e57, in the weak
sense

w— lim E{M% /120 } = S.(1)¢.

A—0 +
We have noticed that so far our analysis holds for a
model consisting of any lattice Z¢, where deN. The method
developed by Martin and Emch is carried out only for 4> 3.

IV. THE STATIONARY GAUSSIAN PROCESS {v,(f)]

We will sketch here the construction of a probability
space (£2,.«7,P) and will define in this space a stationary
Gaussian process which satisfies condition {2.3). We will fol-
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low the analysis developed by Hida in Ref. 7 which employs
the notion of nuclear space together with the so-called
Bochner-Minlos theorem. In order to state this result we
consider E to be the nuclear space *(R*) of all real-valued
rapidly decreasing functions defined on R* and its dual
E* = #'(R*).%° We recall that E * is also a nuclear space.'®

We conclude this section showing that the operator V
(defined in Lemma 3.1) is unbounded and proving Lemma
35.

We say that C:£eE—C (£ )eC is a characteristic func-
tional on E (Ref. 7}, if

(i) Cis continuous on E,
(ii) Cis positive-definite, and

(iii) C(0)=1.

The Bochner—Minlos theorem states that, given a char-
acteristic functional C on £, there exists a unique probability
measure P on the pair (£ *,o7), where &/ is the o-algebra
generated by all cylinder sets in £ * (see Ref. 7, p. 65), which
satisfies the equation

ClE) = | explita )Pldo).

Thus, in order to construct a generalized Gaussian pro-
cess (E *,P) as defined in Ref. 7, it is necessary that the ran-
dom variable o—{w,£ ) has a characteristic functional of the
form:

C(g)=explm(&)— ; k(55))

where m(£ ) and K (£,£ ) are, respectively, its mean and vari-
ance. The stochastic process {v, (¢}} satisfies condition {2.3}.
With this in mind, we now define a suitable characteristic
functional C.

Let {£,€.7(R%:neZ?} be an orthonormal basis in the
Hilbert space ¥ = .£*(R?), with norm ||-||, and inner pro-
duct (-,),. Furthermore, we assume that £, are real-valued
functions.

We call G the bounded self-adjoint operator acting in £
defined by the relation

Ear> > 8 mbim-

meZ?

(4.1)

From (2.4) it follows that g(6) is a continuous positive
function on the compact set B, thus there exist the square
root operators G /2 and G ~'/2.

Therefore, we can use G to define a new inner product.
We call (-,-); the inner product defined by

e = (GE)z,

for every £,me¥. Let X be the Hilbert space given by the
completion of the linear space X with respect to the inner
product (-y)g-

Let ||-||o be the norm in the Hilbert space §) = .Z"*(R*).
We note that if f€b,

Fs,x)ER X R*—f (s,x)eC,
then the function

[, x€R*—f (s,x)
belongs to X for almost all seR.
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Let (-} be the inner product given by

(f“')fm)r = f_m ds(fil)’f‘ZZ))G’

for every fV), f@el). We call - the Hilbert space defined by
the completion of the linear space fy with respect to the inner
product (-,-) . Let ||-|| - be the norm in the space §)-.

Our characteristic functional is then

C:y € E— exp( — ||7I[7/2)-

By the Bochner-Minlos theorem this defines uniquely a
probability measure P on (E *,#) such that

et = [ ewionpido)

for every yeE.

Set 2 = E*. We now construct a stochastic process,
namely v, (¢), defined in (£2,.«,P) which satisfies condition
{2.3).

We recall that through this section, c is a fixed positive
constant.

We define

h, :seR— [ (2¢)"*/Jm | exp( — 2¢s%)eR.
For every neZ’, we set

¥, :(5,x)eR X R*—h, (s), (x)eR.
Because £,€.%(R?) and h.e #(R), y,€E = L (RY).

Finally, we define the real-valued random variables v,,,
for neZ?, by

® e — {(w,7,).

For fixed teR, we call S (¢ ) the shift transformation given
by

Herry) € E> Y- — tyoyy)EE.

Thus {S(z):2€R} is a one-parameter group of transfor-
mations acting on E. This defines on (2,./,P) a group of
measure-preserving transformations { T (¢ );#eR} acting on £2
as follows:

(T(t)w)y) =(Sth),

for every wef2 and yeE.
To each fixed neZ?, we define the stochastic process

v, (t e—(T(t)[w],7,),

for every 0.

Clearly, we have for every y,£€E that

i) E{{(-nN]=0

(i) E{{m 8 =08

It implies that {v,(¢)} is a Gaussian stationary process
which satisfies condition (2.3).

We now prove that the interaction potential at = 0,

V= 3uv,P,,

nez?
is indeed an unbounded operator. For this we use the follow-
ing corollary of the Borel-Cantelli lemma (see Ref. 11).
Corollary: Let { X, :keZ* } be an independent Gaussian
chain obeying the law R(0,1) in the probability space
(2,7 ,P),i.e,E {X,} =0and E {|X,|*} = 1. Then we have
that
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P {w: the sequence X, (w) is unbounded} = 1.

Theorem 4.1: There exists 2,6.«/, with P (2;) = 1, such
that for every wef2,

V(a)) = Z (w’Yn >Pn

neZ?
is an unbounded operator acting in 57
Proof: 1t is sufficient to prove that
P {wef2: the chain {(w,y, ) is unbounded} = 1.
Recall that for each neZ®

yﬂ =hc§n€E7

where {£,:n€Z>} is a basis in the space ;.

Using the Gram~Schmidt orthogonalization theorem,
we obtain an orthonormal basis {e,,:meZ’} in X;. Thus
{Y,, = {-e,, ):m€eZ) is an independent Gaussian chain with
the law R(0,1).

Because £, , neZ?, can be written as a finite linear combi-
nation of e,, neZ?, the conclusion of the theorem follows
from the above corollary. O

In order to prove Lemma 3.5, where we define the
strong mixing coefficient of our system, we need some defini-
tions.

Clearly, the vectors 5, = G ~'/?£,,neZ?, form an or-
thonormal basis in ;. Using the Fourier transform, we ob-
tain that

M = z cn—mgm’
meZ’

where for each neZz?

— 1 — in6 l
= T}, ¢ @)

We now prove Lemma 3.5.
For convenience we work with the random variables

Z'l(t)= Ecn—mvm(t)’

ne Z?, 1>0, instead of v,(t), since both sets, {v,(#)] and
{z,(t)}, generate the same o-algebras &, 0<s<t< 0.
Recall that ¥ = .£%02,o/,P). For 0<s<t< o0, let

F!= [z a,z,(r,) € ¥ a,€R, s<r,<t, Yme Z3].

nez?

Ifz= ) a,z,(r,)eF;, then
nez?

E{} = Zai<oo.

nez?
Let > 0 and 7<0 and take
x= 3 a,z,(r,)eF;
nez?

and
= bm n n e F’
y "gy 2, (s,) r>tU+1 t47
such that E {x?} = E {y*] = 1. Consequently, we have that

|E {xp} = | T a,b,e” "
nez?
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<X la,b,le="

nez’
<e—<"
since s, — r, »7, for all neZ®.

However, if for a fixed neZ? we define x = z, (¢t ) and
y=z,{t+7),

Ef{xy} =e"
Then by Definition 3.2,

Bly, o7 )=e .

Thus from (3.2) and Definition 3.4 follows that
afr)=e" e, O

er?

V. CONCLUSIONS

InRef. 2, an analysis was developed to study the asymp-
totic limit of time-evolutions in Hilbert space through the
use of random differential equations of the form (2.1}. This
analysis is a variation of the method presented by Cogburn
and Hersh!? and Papanicolaou and Varadhan.'? One of the
differences between the results proved in Ref. 2 and Refs. 12
and 13 is that the result in the latter permits the random
framework of the abstract model to be described by a Gaus-
sian system (see Ref. 14).

With respect to the study of the validity of the van
Hove’s long-time, weak-coupling limit we have achieved
some improvements. One is that we were able to construct a
model for which the existence of this limit is not restricted to
afinite radius of convergence. Another one is that the disper-
sion law 6 — 62 can be modified and the proof does not col-
lapse. In particular, we can consider a phonon-type disper-
sion law which behaves as

G—cll|
for small @°s, where c is a positive constant.

We also would like to point out that the result obtained
for the so called Martin-Emch model can be recovered as-
ymptotically from our assembly of models. We recall that, in
our analysis, for each parameter ¢ > 0, we have associated a
quantum system. The so-called van Hove’s limit of each sys-
tem dynamics is described by the semigroup

S.(1) =exp(7V,), 7>0.

Consequently, if we show that as ¢—0™", the semigroups
S, (7) converge to a semigroup, namely Sy(7), which agrees
with the one obtained by Martin and Emch, it means that
when the new degree of freedom we have introduced is omit-
ted, we recover the original Martin—-Emch model. Therefore
we have proved that the weak-coupling limit of the dynamics
of the Martin—-Emch model holds for all rescaled time.

The result that we need to establish in order to carry on
this program is as follows.

Theorem 5.1: For each fixed 70

s — lim S,.(7) = Sy(7).
c—0*

The semigroup {S,(r)=exp(r¥,):r>0] is the van
Hove’s limit obtained by Martin and Emch in Ref. 3.
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The proof of Theorem 5.1 follows directly from the next
lemma.
Lemma 5.1: For every 6eB, the path

as:ce[O,oo)»—»f dse=

0
XL d6, e """~ %ig(9 — 6,)eC

is continuous at ¢ = 0, uniformly on 6.
Progf: Let s> 0 and #eB. By using a simple expansion,
we obtain

02 1 .
de i01s 0—6,)= — in6@
L 1€ g( 1) (277_)3/2 ';3 &n€

Xf dﬁl ei(sG%-%nex).
B
Recalling that

= ® o, T
f cos xzdxzf sinx?dx = %,

after a convenient change of variable, one obtains a constant
A, which does not depend on 6, such that

f d91 ei(ss%+n9,g(9 _ 91)
B

1 A
<?ZW llglls

for every neZ’.
We now show that a, is continuous at ¢ = 0. Take
0 < € < 1. There exists x,> O such that

1 —e~*|<€,

for every O0<x<x,,.
Let 0 < c<x,€°. Then

|26(0) — aylc)]
/e

< [Tasi—e=h j d6,]g(6 — 6,)]

(0]

+ L ds(l — e Ld&, e~ M0 Olgig 9,)‘

< (217')3/2”gH1éez+ Er’-‘)-ﬁz-ugu1 fl /Eds# (5.1)

< Bye,

where the constant B holds for any choice of 6.

We thus conclude that a, is continuous at ¢ = 0, uni-
formly on 6. O

From the contractiveness of the semigroup S, (7), >0,
which is easily seen, and Lemma 5.1 follows the validity of
Theorem 5.1.

We point out that, although we can carry on our analy-
sis in any lattice Z?, we can only derive the asymptotical
limit c—0™* for d>3. This is easily observed in the proof of
Lemma 5.1, there we need the integrability of the function
s—s 4% [see (5.1)].
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Triangular Ising model: Complete expressions for even spin correlations in an

exact evaluation of P(h, 7)
T. C. Choy
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Complete expressions of all even correlations for the triangular Ising model in a recent exact
evaluation of P (h,T ), the local magnetic field distribution, are obtained from the Pfaffian
representation derived by Stephenson. The results for the ferromagnetic J < 0 and
antiferromagnetic J > 0 cases contain a number of interesting features previously not pointed out
in the Ising literature. As a bonus, some new inequalities relating odd and even correlations are

also obtained.
PACS numbers: 75.10.Hk

I. INTRODUCTION

In a recent series of papers,'— some interests have been
revived in the study of the local field distribution P (A, T ) fora
variety of classical spin models. Two important results
which emerged indicate that the statistical mechanics of all
two spin interaction systems (with random or regular bonds
J;; and in a homogeneous field / ) can be reformulated from a
knowledge of P (h,T }and moreover this knowledge suffices to
determine also the inelastic neutron scattering cross section*
for Ising systems. Furthermore, as previously observed,® an
exactdetermination of P (h,T') isindeed possible in the case of
the exactly soluble two-dimensional Ising model in a variety
of lattices.>® While all these results have been reported,'®
details of the calculations were given only for the square and
honeycomb lattices. In these cases all even correlations can
be obtained from the literature'’ in terms of elliptic integrals
and the three spin correlation is easily related to the sponta-
neous magnetization'>"'® by an identity of Fisher.'” The
triangular lattice, which has the maximum coordination
number of the two-dimensional lattices, of 6, proved to be
more complicated. Only Pfaffian expressions were given by
Stephenson,'® who first evaluated the even correlations by
generalizing the theory of Montroll, Potts, and Ward.!® The
use of the Pfaffian formulation is strictly not necessary. Pre-
sumably similar results can also be derived from spinor alge-
bra, as originally used by Onsager and Kaufman,” Yang,?!
and Houtappel,?* although the analysis is in general more
complicated. The purpose of this paper is to provide explicit
(and therefore computable) expressions for all even correla-
tions hitherto unpublished in the exact evaluation of P (4,7)
(see Ref. 23). In Sec. II we obtain explicit expressions for all
even correlations in terms of 11 integrals which can all be
reduced to expressions containing complete elliptic inte-
grals.

In Sec. III we discuss their use in obtaining P (h,T") and
in conclusion we examine the physical consequences of these
results. As a bonus we obtained a new set of correlation in-
equalities relating odd and even correlations.

il. EVEN CORRELATIONS

Labeling the center spin as o, and its six nearest neigh-
bors cyclically from o, to o, on the isotropic triangular lat-
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tice, we require evaluation of the following even correlations
for the purpose of obtaining P (h,T):

So1 =81, ={(0407), Sin= (0,03),

814 =(0104), Si245 = (0,0,0,05), (1)

81234 = (0102050,), S1235 = (0,0,0,05),

Ss = (010203040505) -
The details for obtaining these correlations by considering
perturbed dimer configurations are given by Stephenson,?*
in the form of Pfaffians. In this section we shall use his nota-
tion for the Pfaffian elements, of which there are 31 for our
required correlations. Each element denoted by (m,n),; is
given in the form of the twofold integral

1—p) (™ - ,
(m,n),.j — ((217_);]) ) d¢1 f_ 7d¢2e—1(m¢, + ngy)

X Cji ($1,02)/4 (61,82) (2)

where v = tanh K, K = £/, and the C; are the cofactor ele-
ments of which there are 36. The procedure for obtaining
these cofactors is given in the Appendix to Ref. 18. The
quantity A (¢,.¢,) determines the partition function and for
the isotropic lattice is given by

Alp¢,) =4+ Bcosd, + Csing,, (3)

A=(1—2v+ 60" —20° + v*) — 20(1 — v)* cos 4y,

B= —2v(1 —v/}(1 + cos ¢,),

C =2v(1 —vfsing,.
Not all 31 Pfaffian elements are independent, however. By
exploiting the symmetry of the twofold integrals (1) under
the transformations ¢,—w + 6,¢,— — 0, as well as
A (¢,,8,) = A (¢2,6,), thenumber ofindependent elements re-
duces to 19. One further reduction in the number of integrals
to be evaluated can be further achieved. This is by avoiding a
direct evaluation of S| ,,5 which, like S, is given in terms of a
(6 6) Pfaffian containing 15 terms in its expansion. In this
way, the number of integrals to be evaluated reduces to 11,
thereby obtaining a considerable saving in labor. We finally
obtain o,,55 from all the rest by using Fisher’s identity,*’

although Stephenson originally used it as a consistency
check. Expansion of the Pfaffian expressions for the various
correlations gives
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So1 =S2=v+ (L1)sr, (4)
Sz = S%z - (1,0)35 — (2,1)gr(0,0);s, (5)
S = S%z + (2,2)rr(0,0)75, (6)
Si24s = S%z +{— l,l)§~3 - (0’2).297" {7)
51234=S%2 +(=20us(Ll)y —(—2, — l)im’ (8)

Se = S125123a — 2(— 2, — l)i:s [S12 + (L) —(— 290)US]
+ (= 20)us [(L1)2oS12 + (=2, — Dps — (= 2,0)%s]
+ (L)w [(LDZy — (=2, — Ups + (= 2,0)ysS12],
(%)
and from Fisher’s identity
Si23s = {S12 — C(1 + 28, + 2513 + 844)
— D(4S); + 48,3 + 2514 + 451234 + 251245)
— E (281234 + S124s + Se)} {4D + 2E 1 71, (10)

where
C = jA(tanh 6K + 4 tanh 4K + 5 tanh 2K),
D = 4(tanh 6K — 3 tanh 2K ), (11)

E = J(tanh 6K — 4 tanh 4K + 5 tanh 2K).

In the Appendix we list the complete expressions for all 11
Pfaffian elements. One of the integrals in (2} can easily be
performed by contour integration. The remaining one as giv-
en in the Appendix can be reduced to complete elliptic inte-
grals;?® for instance,

(5 o

2(1 —v) v
502 —1 2 ,
+-a( (k)] 0
where
—122 2 28 —a)
= —1 1 /, k ==
g=[6— i@ +1)] T T
213 3
a=(n+1)—(3+29"Y% 77=(1—+-v—)—-l#, (13)
(1 — v

B=n+1)+03+2m"
for the ferromagnetic case. The antiferromagnetic case is

best obtained by analytic continuation to complex & * from
{11).

TABLE . Critical values for the 11 Pfaffian elements.

Element Ferromagnetic T= T, Antiferromagnetic 7= 0
(Ll)sr V-t :
(1,0)rs §-—\/§/‘Ir —§+‘/§/277
(21)zr — 41 +V3)+ (3/mW3 +2) 1+3/2r
(0.0).s U —3) + W3/ - 2) ~ {3+ 3/2m)
(2.2)sr @—2/m2¥3+3) —rr
(0.0)r5 G+2/m23-3) B/

(1= 1)ss ¥ —103/7 V3/2m—3
(0.2)sr P—12/3/7 i~ 332
(—20)ps  H14V3 4 13) — (@/m)(y3 +3) Ry
(L))o 143 - 13) + (/73 — 3) —3+3/7
(—21)ps 13J3/6 — 12/7 0
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The resulting expressions are not unique, however, as
may be seen from the addition formulas of elliptic integrals
as well as the Landen transformation®’ in the parameter & ’,
here chosen such that k ‘<1 for T=T, . The formulas for this
reduction to complete elliptic integrals like (12) are extreme-
ly intricate. For practical purposes it is simplest to evaluate
directly the integrals as given in the Appendix by numerical
methods. At the ferromagnetic critical point
v=v, =2 —1'3 and the antiferromagnetic zero point
v=1v,= — 1, however, they reduce to elementary integrals
that can be evaluated exactly. These values are tabulated in
Table 1. With these values and Egs. (3)~(9) we easily obtain
exact critical values for our even correlations.”® Since the
number of terms in an (m X m) Pfaffian expansion grows as
(m — 1) an evaluation of S and S,,,5 by Pfaffians represents
perhaps the limit for human computation. For periodically
frustrated lattices with a larger repeated cell, or indeed for
the eight spin correlation, some form of computer symbolic
manipulation becomes essential.

. Ah 7

Following Ref. 1, the local magnetic field probability
distribution for the Ising model

H= -—J ;;a,oj, (/) nearest neighbors (14)
)
is given by
P(hT)= <5(h—zaj)), h=H/J, (15)
7

where the sum is over nearest neighbors to o;. As noted in
Ref. 2, P(h,T) determines all thermodynamic quantities
through the magnetization

M= Nfdh tanh(Bh )P (h,T), B=1/kyT, (16)
and internal energy
U= — %th tanh(Bk )P (,T). (17)

It further contains information on the neutron scattering
cross section:

Skw) = ~81;—J-j dte— iwrz<ai+ o7 (t)+o7 o)

= (N/2) {P(@/2)+ P(— w/2)} /(1 + e~ P, (18)
where 0+ are the Pauli raising and lowering operators.
Thus apart from its simple physical interpretation as a local
field distribution, the above exact relations provide a strong
motivation for the calculation of P(4,7) which can be ob-
tained exactly for two-dimensional Ising models in a zero
field.

Equation (15) is conveniently expanded as

P(h,T):Lf d6 e= ™" cos? 0
27J -

x (fl(1+iaj tan 9)>, (19)

=1

where z = 6 for the triangular Ising model and the product is
taken round the ring of nearest neighbors to spin o, We
easily see that the product in Eq. (19) involves all even corre-
lations given in Sec. II, as well as the odd correlations
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Si23 = (0,0,03),  Spp4 = (0,0,0,), Sias = <0'10'305),(20)

and
S12345 = (0'1‘72030'4‘75>,

for the ferromagnetic lattice when 7" < T, (see Ref. 29).

The simple integrals involved in Eq. (19), can easily be
evaluated for the triangular lattice.>® We shall denote the
result in a matrix notation as follows:

P = Mc, (21)
where
1 1
C, 6m
G 652 + 655 + 35,
c= G = 65,23 + 12554 + 28135 o (22)
C, 651234 + 681235 + 351245
Cs 6512345
Ce 5
=1
64
1 1 1 1 1 1 1
6 4 2 0 -2 —4 —6
15 5 —~-1 =3 -1 5 15

—20
15 -5 -1 3 -1 =5 15

6 —4 2 0 -2 4 —6
1 -1 1 —1 1 -1 1
(23)
and
P (6)
P4)
P(2)
P= P(0) (24)
P(-2)
P(—4)
(~6)

are the values for P(h,T)forh=6,4,2,0, —2, — 4, —6,
respectively.

In Fig. 1 we plot histograms of P (,T') for the antiferro-
magnetic triangular lattice. This is to be compared with the
ferromagnetic case given in Ref. 2. These are taken at tem-
perature ranges in which S, and .S, change sign, see Fig. 6 of
Ref. 18. The most notable feature is the variation of the peak
at P (0), which alternately sharpens and flattens slightly. This
coincides with S, changing sign twice (and S, changing sign
once), as was noted by Stephenson. It seems to be a manifes-
tation of the effect of frustration destroying the system’s at-
tempt to order.

Further, on account of the positivity of P, we can write
|

T/ -5 T/ =1 T/ Y2

T A4 P(h) I LP(h) { 4P(h)

66202 4 6 64202 4 6 6 420 2 4 6

T/T =4 T/T = T/T =0
4P{h) AP(h) 4P(h)
T T T 1Tt h STt *rh T T | T Th
6-4-2 0 2 4 6 6-4-2 0 6 -6 -4 -2 b

FIG. 1. Histograms of P (4, T ) for the isotropic antiferromagnetic triangular
Ising model.

down a set of correlation inequalities from (22) relating odd
and even correlations; for example

15—-C,~C, + 158,50, T>T., (25)
6-4C, +2C, — 2C, +4C; — 65,0, T<T.. (26)

However, for reasons given in Ref. 29, our calculations for
T < T, in the ferromagnetic lattice are incomplete.

IV. CONCLUSION

In conclusion, we have evaluated P (4, T) exactly by di-
rect computations of a number of even spin correlations. The
main labor comes from the expansion and reduction in the
number of Pfaffian elements, which involves evaluation of
many integrals. All these expressions are now written in the
Appendix. The existence of a dip in the ferromagnetic case®’
for T> T, + is particularly interesting and seems to have
been observed also in computer simulations.**** It appears
from these studies that observation of a phase transition
from P(h,T') in general is a subtle effect involving the full
distribution but for the ferromagnetic case with an infinitesi-
mal field it must be concluded only on the grounds of the
onset of asymmetry in the distribution rather than a mini-
mum of P (k) at h = 0. Itis also interesting to suggest that the
features of P (A,T) for the triangular antiferromagnet as indi-
cated above are perhaps universal for a larger class of frus-
trated or periodically frustrated models that do not order in
two dimensions,*** a subject for future study.
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APPENDIX: COMPLETE EXPRESSIONS FOR THE 11 PFAFFIAN ELEMENTS

1 — v(5v* — l)cos 6 + v(1 — v)[(1 + v)’

— 47]

_1 7!
(L 1sr = ﬂJ;dG {4+ (b—c) —
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2a(b + c)cos 8 + 4be cos?6 | /¥’
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(IO)RS=—+4wfd (@ +(b—c)f—

o [4v(1 — v — ¥] + [18v(1 — v)* + 2y — 4(1 — v*)*]cos 8 — 4u(1 — v)* cos? 6
— 2a{b + c) cos 6 + 4bc cos® 0}/

) + [2v(1 — v?) — /20 — (1 — v)*/2]cos 6 + (1 — v)* cos’ 0

11 (7, (y/4+ v} 1 —
Upp = ——+— | ag
@ U)ar 4{+ﬁf S

— 2a(b + c) cos 8 + 4bc cos® 8 }'/2

(1 — v)* + yv/4) — v*(1 — v)* cos? 9

(O O)LS = T

_v 1
22er =+ fdo
(1 —v3(1 — v —

{@>+(b—cf -

v d¢9 [2v(1 — v?) + (*/2)(1 — v)* + vy/2]cos 6 —
+ 2a(b + c)cos @ + 4bc cos® 6 }'/?

/2] + [v(1 — v)(1 + v)* — 40%) + 301 — v)* + vylcos 8 — [2v¥(1

—v)? + 2(1 — v¥(1 — v)*]cos® 6

X

{@® + (b — ¢ — 2a(b + c)cos 8 + 4bc cos> @ }/*

(0.0)rs
v, 1 1 J‘ 40 lov/2 + (1 — (1 — v)*] — [o(1 — o){(1 + v — 4v%) + 30*(1 — v 4+ vylcos 8 + 20*{1 — v)? coszf)’

2 {a® + (b — cf* — 2a(b + c)cos O + 4bc cos® 9 }'/2
(L,1)y

1 +—1-J¢d6 [(1=v¥ (y+3v(1—u)2)]cos6~[20(1 — %) 4 20(1 — vP]cos® 6 + V(1 — v?) + (y/2 + (1 -—v))

T {@® + (b — ¢)* — 2a(b + c)cos 6 + 4bc cos> 6 }/?
(= Li)e = — J‘ 00— v)* cos® 8 — 2(y + v(l — v)Acos® @ + (¥ + v(1 — v)*)cos 8 + 7//2
{@® + (b — ¢)* — 2a(b + c)cos 6 + 4bc cos? 0 }1/?

0,25y = (M)—“ﬁ’-) — 2+ %f:d& ”(17 + %)(1 — (1 + 0 — 47 + 301 — o — yv]cos 9

41 —v)
+ 2y + ol —vfp—(1 —v)2(1 —v

FU= 2 = o 2= T 14 o~ 407

X[{a®*+ (b —cf —

(—mm=i+ifw
2 7 Jo

% [y + 3v(1 —vp) +v*(1 —

v?)jeos € + (2v(1 — v —2(1 —

P — (1 —o)((1 + v)® — 4v¥)]cos? 6 — 41 — v)* cos® 6

2a(b + cjcos 6 + 4bc cos® ¢ }1/2] !,

v¥)lcos® 8 + (1 — v?) — (/2 + 20(1 — v)?)

{@® +(b—cf -
1_ 2
(=2, = 1)ps = 4UU
+ [20(1 — v¥)]cos® 8 — [ [(1 — v?)(1
— 2a(b + c)cos @ + 4bc cos? 6}1/2] 1,
where

y=1U1+0 + 8211+ 0P, 7=yp/20(1 — P,

and

a=2w(+vY, b=ur%, =(1—vp

'T. C. Choy and D. Sherrington, J. Phys. A 16, 1.265 (1983); J. Phys. A 16,
3691 (1983) (corrigendum).

*M. Thomsen, M. F. Thorpe, T. C. Choy, and D. Sherrington, Phys. Rev. B
{to be published, 1984).

*T. C. Choy, D. Sherrington, M. Thomsen, and M. F. Thorpe (to be pub-
lished).

“See Ref. 2.

3See Refs. 1 and 2.

°L. Onsager, Phys. Rev. 65, 117 (1944),

3561 J. Math. Phys, Vol. 25, No. 12, December 1984

2a(b + cjcos @ + 4bc cos? 6 }1/?

+%fﬂd9 (T —o(1 —»?)/2] (27 + 1) ~ p(1 — ¥)}cos & — [(1 — ) (1 —v)?

— /2] — (1 ~ )} [{a® + (b — ]

’G. H. Wannier, Phys. Rev. 79, 357 (1950); Phys. Rev. B 7, 5017 (1973)
(errata).

SR. M. F. Houtappel, Physica 16, 425 {1950).

°K. Husimi and I. Syozi, Progr. Theor. Phys. (Kyoto) 5, 177, 341 (1950).

19See Ref. 2.

UM, E, Fisher, Phys. Rev. 113, 969 (1959).

'2B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949).

3L. Onsager, Nuovo Cimento, Suppl. 6, 261 (1949),

4C. N. Yang, Phys. Rev. 85, 808 (1952).

'5S. Naya, Progr. Theor. Phys. 11, 53 (1954).

!E. W. Montroll, R. B. Potts, and I. C. Ward, J. Math. Phys. 4, 308 (1963).

YSee Ref. 11.

'8J, Stephenson, J. Math. Phys. 5, 1009 (1964),

19See Ref. 16.

20See Ref. 12.

21See Ref. 14.

“2See Ref. 8.

T. C. Choy 3561



238ee Ref. 2.

*4See Ref. 18.

23See Ref. 11.

26p. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engi-
neers and Physicists (Springer-Verlag, Berlin, 1954).

27See Ref. 26, p. 39.

8These results are reported in Ref. 1.

29Some of these, notably S,,; and S5, can be obtained by the star-triangular
theorem, J. H. Barry et al., Physica 113A, 367 (1982). However their meth-
ods of obtaining S|, and S),,,4s are in error resulting in the violation of our

3562 J. Math. Phys., Vol. 25, No. 12, December 1984

correlation inequalities Eq. (25). Our calculations for the ferromagnetic
triangular lattice P(h,T) for T < T, is hence incomplete.

30See Ref. 2.

*'Results for the ferromagnetic triangular lattice are given in Ref. 2.

324, J. Hilhorst (private communication),

*For a related study using renormalization group methods see A. D. Bruce,
J. Phys. C 14, 3667 (1981).

3J. Villain, J. Phys. C 10, 1717 (1977).

35V. V. Bryskin, A. Yu Goltsev, and E. E. Kudinov, J. Phys. C 13, 5999
{1980).

T. C. Choy 3562



ERRATUM

Erratum: Electrovac type D solutions with cosmological constant

[J. Math. Phys. 25, 1951 (1984)]

Alberto Garcia Diaz

Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, Apartado Postal 14-740,

07000 México D. F., Mexico

(Received 9 August 1984; accepted for publication 17 August 1984)

PACS numbers: 04.20.Jb, 99.10. 4 g

In Table I, the definition of S(uz) given in the row
B — R should read S (uz) = v — uz?, where v = {1,0, — 1}
and u is a certain constant assuming its real values indepen-
dently of the values of v. [In particular, when
u =€ = — 1,0,1} for each choice of v there are three possi-
bilities for selecting i2. Some of the resulting functions S for a
given choice of v and g have to be excluded because of the
used signature ( + + + —).] Thus, intherow B — R, thev
used in P runs its values independently of the values assigned
to the v appearing in Q. In the row gR — N, the fourth term
of Q should be (¢* + g°) »*. In g*R — N, the polynomial of
the fourth degree in x should be denoted by P. In gC, the
function p should be p =0, while the polynomial of the
fourth degree in x should be denoted by P. In gB( + ), the
third term of Q should be + A/*. In the row gB( — ), the Q
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should be Q = S (¢y). In the row P — C[A4 ], in w the external
differential operator “d” in front of the parenthesis was
omitted. In the row P — D, the signs of the second, third, and
fourth terms of Q (y) should be reversed.

In the definitions of e! and ¢* [Eq. (A3)] the function m
should be replaced by p.

In formulas (A5), the imaginary part of C® was omit-
ted,

Im 24H —C® =£&[Px e P]
A 4

[Qy+2&g].

+
A

mx
A

© 1984 American Institute of Physics 3563



	JMP, Volume 25, Issue 12, Page 3363
	JMP, Volume 25, Issue 12, Page 3367
	JMP, Volume 25, Issue 12, Page 3375
	JMP, Volume 25, Issue 12, Page 3382
	JMP, Volume 25, Issue 12, Page 3387
	JMP, Volume 25, Issue 12, Page 3390
	JMP, Volume 25, Issue 12, Page 3402
	JMP, Volume 25, Issue 12, Page 3415
	JMP, Volume 25, Issue 12, Page 3424
	JMP, Volume 25, Issue 12, Page 3433
	JMP, Volume 25, Issue 12, Page 3439
	JMP, Volume 25, Issue 12, Page 3444
	JMP, Volume 25, Issue 12, Page 3451
	JMP, Volume 25, Issue 12, Page 3455
	JMP, Volume 25, Issue 12, Page 3460
	JMP, Volume 25, Issue 12, Page 3470
	JMP, Volume 25, Issue 12, Page 3474
	JMP, Volume 25, Issue 12, Page 3479
	JMP, Volume 25, Issue 12, Page 3483
	JMP, Volume 25, Issue 12, Page 3489
	JMP, Volume 25, Issue 12, Page 3492
	JMP, Volume 25, Issue 12, Page 3497
	JMP, Volume 25, Issue 12, Page 3503
	JMP, Volume 25, Issue 12, Page 3510
	JMP, Volume 25, Issue 12, Page 3513
	JMP, Volume 25, Issue 12, Page 3527
	JMP, Volume 25, Issue 12, Page 3538
	JMP, Volume 25, Issue 12, Page 3540
	JMP, Volume 25, Issue 12, Page 3545
	JMP, Volume 25, Issue 12, Page 3551
	JMP, Volume 25, Issue 12, Page 3558
	JMP, Volume 25, Issue 12, Page 3563

